1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986 |
- #pragma once
- // Python headers must be included before any system headers, since
- // they define _POSIX_C_SOURCE
- #include <Python.h>
- #include <vector>
- #include <map>
- #include <array>
- #include <numeric>
- #include <algorithm>
- #include <stdexcept>
- #include <iostream>
- #include <cstdint> // <cstdint> requires c++11 support
- #include <functional>
- #include <string> // std::stod
- #ifndef WITHOUT_NUMPY
- # define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
- # include <numpy/arrayobject.h>
- # ifdef WITH_OPENCV
- # include <opencv2/opencv.hpp>
- # endif // WITH_OPENCV
- /*
- * A bunch of constants were removed in OpenCV 4 in favour of enum classes, so
- * define the ones we need here.
- */
- # if CV_MAJOR_VERSION > 3
- # define CV_BGR2RGB cv::COLOR_BGR2RGB
- # define CV_BGRA2RGBA cv::COLOR_BGRA2RGBA
- # endif
- #endif // WITHOUT_NUMPY
- #if PY_MAJOR_VERSION >= 3
- # define PyString_FromString PyUnicode_FromString
- # define PyInt_FromLong PyLong_FromLong
- # define PyString_FromString PyUnicode_FromString
- #endif
- namespace matplotlibcpp {
- namespace detail {
- static std::string s_backend;
- struct _interpreter {
- PyObject* s_python_function_arrow;
- PyObject *s_python_function_show;
- PyObject *s_python_function_close;
- PyObject *s_python_function_draw;
- PyObject *s_python_function_pause;
- PyObject *s_python_function_save;
- PyObject *s_python_function_figure;
- PyObject *s_python_function_fignum_exists;
- PyObject *s_python_function_plot;
- PyObject *s_python_function_quiver;
- PyObject* s_python_function_contour;
- PyObject *s_python_function_semilogx;
- PyObject *s_python_function_semilogy;
- PyObject *s_python_function_loglog;
- PyObject *s_python_function_fill;
- PyObject *s_python_function_fill_between;
- PyObject *s_python_function_hist;
- PyObject *s_python_function_imshow;
- PyObject *s_python_function_scatter;
- PyObject *s_python_function_boxplot;
- PyObject *s_python_function_subplot;
- PyObject *s_python_function_subplot2grid;
- PyObject *s_python_function_legend;
- PyObject *s_python_function_xlim;
- PyObject *s_python_function_ion;
- PyObject *s_python_function_ginput;
- PyObject *s_python_function_ylim;
- PyObject *s_python_function_title;
- PyObject *s_python_function_axis;
- PyObject *s_python_function_axhline;
- PyObject *s_python_function_axvline;
- PyObject *s_python_function_axvspan;
- PyObject *s_python_function_xlabel;
- PyObject *s_python_function_ylabel;
- PyObject *s_python_function_gca;
- PyObject *s_python_function_xticks;
- PyObject *s_python_function_yticks;
- PyObject* s_python_function_margins;
- PyObject *s_python_function_tick_params;
- PyObject *s_python_function_grid;
- PyObject* s_python_function_cla;
- PyObject *s_python_function_clf;
- PyObject *s_python_function_errorbar;
- PyObject *s_python_function_annotate;
- PyObject *s_python_function_tight_layout;
- PyObject *s_python_colormap;
- PyObject *s_python_empty_tuple;
- PyObject *s_python_function_stem;
- PyObject *s_python_function_xkcd;
- PyObject *s_python_function_text;
- PyObject *s_python_function_suptitle;
- PyObject *s_python_function_bar;
- PyObject *s_python_function_barh;
- PyObject *s_python_function_colorbar;
- PyObject *s_python_function_subplots_adjust;
- PyObject *s_python_function_rcparams;
- PyObject *s_python_function_spy;
- /* For now, _interpreter is implemented as a singleton since its currently not possible to have
- multiple independent embedded python interpreters without patching the python source code
- or starting a separate process for each. [1]
- Furthermore, many python objects expect that they are destructed in the same thread as they
- were constructed. [2] So for advanced usage, a `kill()` function is provided so that library
- users can manually ensure that the interpreter is constructed and destroyed within the
- same thread.
- 1: http://bytes.com/topic/python/answers/793370-multiple-independent-python-interpreters-c-c-program
- 2: https://github.com/lava/matplotlib-cpp/pull/202#issue-436220256
- */
- static _interpreter& get() {
- return interkeeper(false);
- }
- static _interpreter& kill() {
- return interkeeper(true);
- }
- // Stores the actual singleton object referenced by `get()` and `kill()`.
- static _interpreter& interkeeper(bool should_kill) {
- static _interpreter ctx;
- if (should_kill)
- ctx.~_interpreter();
- return ctx;
- }
- PyObject* safe_import(PyObject* module, std::string fname) {
- PyObject* fn = PyObject_GetAttrString(module, fname.c_str());
- if (!fn)
- throw std::runtime_error(std::string("Couldn't find required function: ") + fname);
- if (!PyFunction_Check(fn))
- throw std::runtime_error(fname + std::string(" is unexpectedly not a PyFunction."));
- return fn;
- }
- private:
- #ifndef WITHOUT_NUMPY
- # if PY_MAJOR_VERSION >= 3
- void *import_numpy() {
- import_array(); // initialize C-API
- return NULL;
- }
- # else
- void import_numpy() {
- import_array(); // initialize C-API
- }
- # endif
- #endif
- _interpreter() {
- // optional but recommended
- #if PY_MAJOR_VERSION >= 3
- wchar_t name[] = L"plotting";
- #else
- char name[] = "plotting";
- #endif
- Py_SetProgramName(name);
- Py_Initialize();
- wchar_t const *dummy_args[] = {L"Python", NULL}; // const is needed because literals must not be modified
- wchar_t const **argv = dummy_args;
- int argc = sizeof(dummy_args)/sizeof(dummy_args[0])-1;
- #if PY_MAJOR_VERSION >= 3
- PySys_SetArgv(argc, const_cast<wchar_t **>(argv));
- #else
- PySys_SetArgv(argc, (char **)(argv));
- #endif
- #ifndef WITHOUT_NUMPY
- import_numpy(); // initialize numpy C-API
- #endif
- PyObject* matplotlibname = PyString_FromString("matplotlib");
- PyObject* pyplotname = PyString_FromString("matplotlib.pyplot");
- PyObject* cmname = PyString_FromString("matplotlib.cm");
- PyObject* pylabname = PyString_FromString("pylab");
- if (!pyplotname || !pylabname || !matplotlibname || !cmname) {
- throw std::runtime_error("couldnt create string");
- }
- PyObject* matplotlib = PyImport_Import(matplotlibname);
- Py_DECREF(matplotlibname);
- if (!matplotlib) {
- PyErr_Print();
- throw std::runtime_error("Error loading module matplotlib!");
- }
- // matplotlib.use() must be called *before* pylab, matplotlib.pyplot,
- // or matplotlib.backends is imported for the first time
- if (!s_backend.empty()) {
- PyObject_CallMethod(matplotlib, const_cast<char*>("use"), const_cast<char*>("s"), s_backend.c_str());
- }
- PyObject* pymod = PyImport_Import(pyplotname);
- Py_DECREF(pyplotname);
- if (!pymod) { throw std::runtime_error("Error loading module matplotlib.pyplot!"); }
- s_python_colormap = PyImport_Import(cmname);
- Py_DECREF(cmname);
- if (!s_python_colormap) { throw std::runtime_error("Error loading module matplotlib.cm!"); }
- PyObject* pylabmod = PyImport_Import(pylabname);
- Py_DECREF(pylabname);
- if (!pylabmod) { throw std::runtime_error("Error loading module pylab!"); }
- s_python_function_arrow = safe_import(pymod, "arrow");
- s_python_function_show = safe_import(pymod, "show");
- s_python_function_close = safe_import(pymod, "close");
- s_python_function_draw = safe_import(pymod, "draw");
- s_python_function_pause = safe_import(pymod, "pause");
- s_python_function_figure = safe_import(pymod, "figure");
- s_python_function_fignum_exists = safe_import(pymod, "fignum_exists");
- s_python_function_plot = safe_import(pymod, "plot");
- s_python_function_quiver = safe_import(pymod, "quiver");
- s_python_function_contour = safe_import(pymod, "contour");
- s_python_function_semilogx = safe_import(pymod, "semilogx");
- s_python_function_semilogy = safe_import(pymod, "semilogy");
- s_python_function_loglog = safe_import(pymod, "loglog");
- s_python_function_fill = safe_import(pymod, "fill");
- s_python_function_fill_between = safe_import(pymod, "fill_between");
- s_python_function_hist = safe_import(pymod,"hist");
- s_python_function_scatter = safe_import(pymod,"scatter");
- s_python_function_boxplot = safe_import(pymod,"boxplot");
- s_python_function_subplot = safe_import(pymod, "subplot");
- s_python_function_subplot2grid = safe_import(pymod, "subplot2grid");
- s_python_function_legend = safe_import(pymod, "legend");
- s_python_function_xlim = safe_import(pymod, "xlim");
- s_python_function_ylim = safe_import(pymod, "ylim");
- s_python_function_title = safe_import(pymod, "title");
- s_python_function_axis = safe_import(pymod, "axis");
- s_python_function_axhline = safe_import(pymod, "axhline");
- s_python_function_axvline = safe_import(pymod, "axvline");
- s_python_function_axvspan = safe_import(pymod, "axvspan");
- s_python_function_xlabel = safe_import(pymod, "xlabel");
- s_python_function_ylabel = safe_import(pymod, "ylabel");
- s_python_function_gca = safe_import(pymod, "gca");
- s_python_function_xticks = safe_import(pymod, "xticks");
- s_python_function_yticks = safe_import(pymod, "yticks");
- s_python_function_margins = safe_import(pymod, "margins");
- s_python_function_tick_params = safe_import(pymod, "tick_params");
- s_python_function_grid = safe_import(pymod, "grid");
- s_python_function_ion = safe_import(pymod, "ion");
- s_python_function_ginput = safe_import(pymod, "ginput");
- s_python_function_save = safe_import(pylabmod, "savefig");
- s_python_function_annotate = safe_import(pymod,"annotate");
- s_python_function_cla = safe_import(pymod, "cla");
- s_python_function_clf = safe_import(pymod, "clf");
- s_python_function_errorbar = safe_import(pymod, "errorbar");
- s_python_function_tight_layout = safe_import(pymod, "tight_layout");
- s_python_function_stem = safe_import(pymod, "stem");
- s_python_function_xkcd = safe_import(pymod, "xkcd");
- s_python_function_text = safe_import(pymod, "text");
- s_python_function_suptitle = safe_import(pymod, "suptitle");
- s_python_function_bar = safe_import(pymod,"bar");
- s_python_function_barh = safe_import(pymod, "barh");
- s_python_function_colorbar = PyObject_GetAttrString(pymod, "colorbar");
- s_python_function_subplots_adjust = safe_import(pymod,"subplots_adjust");
- s_python_function_rcparams = PyObject_GetAttrString(pymod, "rcParams");
- s_python_function_spy = PyObject_GetAttrString(pymod, "spy");
- #ifndef WITHOUT_NUMPY
- s_python_function_imshow = safe_import(pymod, "imshow");
- #endif
- s_python_empty_tuple = PyTuple_New(0);
- }
- ~_interpreter() {
- Py_Finalize();
- }
- };
- } // end namespace detail
- /// Select the backend
- ///
- /// **NOTE:** This must be called before the first plot command to have
- /// any effect.
- ///
- /// Mainly useful to select the non-interactive 'Agg' backend when running
- /// matplotlibcpp in headless mode, for example on a machine with no display.
- ///
- /// See also: https://matplotlib.org/2.0.2/api/matplotlib_configuration_api.html#matplotlib.use
- inline void backend(const std::string& name)
- {
- detail::s_backend = name;
- }
- inline bool annotate(std::string annotation, double x, double y)
- {
- detail::_interpreter::get();
- PyObject * xy = PyTuple_New(2);
- PyObject * str = PyString_FromString(annotation.c_str());
- PyTuple_SetItem(xy,0,PyFloat_FromDouble(x));
- PyTuple_SetItem(xy,1,PyFloat_FromDouble(y));
- PyObject* kwargs = PyDict_New();
- PyDict_SetItemString(kwargs, "xy", xy);
- PyObject* args = PyTuple_New(1);
- PyTuple_SetItem(args, 0, str);
- PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_annotate, args, kwargs);
- Py_DECREF(args);
- Py_DECREF(kwargs);
- if(res) Py_DECREF(res);
- return res;
- }
- namespace detail {
- #ifndef WITHOUT_NUMPY
- // Type selector for numpy array conversion
- template <typename T> struct select_npy_type { const static NPY_TYPES type = NPY_NOTYPE; }; //Default
- template <> struct select_npy_type<double> { const static NPY_TYPES type = NPY_DOUBLE; };
- template <> struct select_npy_type<float> { const static NPY_TYPES type = NPY_FLOAT; };
- template <> struct select_npy_type<bool> { const static NPY_TYPES type = NPY_BOOL; };
- template <> struct select_npy_type<int8_t> { const static NPY_TYPES type = NPY_INT8; };
- template <> struct select_npy_type<int16_t> { const static NPY_TYPES type = NPY_SHORT; };
- template <> struct select_npy_type<int32_t> { const static NPY_TYPES type = NPY_INT; };
- template <> struct select_npy_type<int64_t> { const static NPY_TYPES type = NPY_INT64; };
- template <> struct select_npy_type<uint8_t> { const static NPY_TYPES type = NPY_UINT8; };
- template <> struct select_npy_type<uint16_t> { const static NPY_TYPES type = NPY_USHORT; };
- template <> struct select_npy_type<uint32_t> { const static NPY_TYPES type = NPY_ULONG; };
- template <> struct select_npy_type<uint64_t> { const static NPY_TYPES type = NPY_UINT64; };
- // Sanity checks; comment them out or change the numpy type below if you're compiling on
- // a platform where they don't apply
- static_assert(sizeof(long long) == 8);
- template <> struct select_npy_type<long long> { const static NPY_TYPES type = NPY_INT64; };
- static_assert(sizeof(unsigned long long) == 8);
- template <> struct select_npy_type<unsigned long long> { const static NPY_TYPES type = NPY_UINT64; };
- template<typename Numeric>
- PyObject* get_array(const std::vector<Numeric>& v)
- {
- npy_intp vsize = v.size();
- NPY_TYPES type = select_npy_type<Numeric>::type;
- if (type == NPY_NOTYPE) {
- size_t memsize = v.size()*sizeof(double);
- double* dp = static_cast<double*>(::malloc(memsize));
- for (size_t i=0; i<v.size(); ++i)
- dp[i] = v[i];
- PyObject* varray = PyArray_SimpleNewFromData(1, &vsize, NPY_DOUBLE, dp);
- PyArray_UpdateFlags(reinterpret_cast<PyArrayObject*>(varray), NPY_ARRAY_OWNDATA);
- return varray;
- }
- PyObject* varray = PyArray_SimpleNewFromData(1, &vsize, type, (void*)(v.data()));
- return varray;
- }
- template<typename Numeric>
- PyObject* get_2darray(const std::vector<::std::vector<Numeric>>& v)
- {
- if (v.size() < 1) throw std::runtime_error("get_2d_array v too small");
- npy_intp vsize[2] = {static_cast<npy_intp>(v.size()),
- static_cast<npy_intp>(v[0].size())};
- PyArrayObject *varray =
- (PyArrayObject *)PyArray_SimpleNew(2, vsize, NPY_DOUBLE);
- double *vd_begin = static_cast<double *>(PyArray_DATA(varray));
- for (const ::std::vector<Numeric> &v_row : v) {
- if (v_row.size() != static_cast<size_t>(vsize[1]))
- throw std::runtime_error("Missmatched array size");
- std::copy(v_row.begin(), v_row.end(), vd_begin);
- vd_begin += vsize[1];
- }
- return reinterpret_cast<PyObject *>(varray);
- }
- #else // fallback if we don't have numpy: copy every element of the given vector
- template<typename Numeric>
- PyObject* get_array(const std::vector<Numeric>& v)
- {
- PyObject* list = PyList_New(v.size());
- for(size_t i = 0; i < v.size(); ++i) {
- PyList_SetItem(list, i, PyFloat_FromDouble(v.at(i)));
- }
- return list;
- }
- #endif // WITHOUT_NUMPY
- // sometimes, for labels and such, we need string arrays
- inline PyObject * get_array(const std::vector<std::string>& strings)
- {
- PyObject* list = PyList_New(strings.size());
- for (std::size_t i = 0; i < strings.size(); ++i) {
- PyList_SetItem(list, i, PyString_FromString(strings[i].c_str()));
- }
- return list;
- }
- // not all matplotlib need 2d arrays, some prefer lists of lists
- template<typename Numeric>
- PyObject* get_listlist(const std::vector<std::vector<Numeric>>& ll)
- {
- PyObject* listlist = PyList_New(ll.size());
- for (std::size_t i = 0; i < ll.size(); ++i) {
- PyList_SetItem(listlist, i, get_array(ll[i]));
- }
- return listlist;
- }
- } // namespace detail
- /// Plot a line through the given x and y data points..
- ///
- /// See: https://matplotlib.org/3.2.1/api/_as_gen/matplotlib.pyplot.plot.html
- template<typename Numeric>
- bool plot(const std::vector<Numeric> &x, const std::vector<Numeric> &y, const std::map<std::string, std::string>& keywords)
- {
- assert(x.size() == y.size());
- detail::_interpreter::get();
- // using numpy arrays
- PyObject* xarray = detail::get_array(x);
- PyObject* yarray = detail::get_array(y);
- // construct positional args
- PyObject* args = PyTuple_New(2);
- PyTuple_SetItem(args, 0, xarray);
- PyTuple_SetItem(args, 1, yarray);
- // construct keyword args
- PyObject* kwargs = PyDict_New();
- for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it)
- {
- PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str()));
- }
- PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_plot, args, kwargs);
- Py_DECREF(args);
- Py_DECREF(kwargs);
- if(res) Py_DECREF(res);
- return res;
- }
- // TODO - it should be possible to make this work by implementing
- // a non-numpy alternative for `detail::get_2darray()`.
- #ifndef WITHOUT_NUMPY
- template <typename Numeric>
- void plot_surface(const std::vector<::std::vector<Numeric>> &x,
- const std::vector<::std::vector<Numeric>> &y,
- const std::vector<::std::vector<Numeric>> &z,
- const std::map<std::string, std::string> &keywords =
- std::map<std::string, std::string>(),
- const long fig_number=0)
- {
- detail::_interpreter::get();
- // We lazily load the modules here the first time this function is called
- // because I'm not sure that we can assume "matplotlib installed" implies
- // "mpl_toolkits installed" on all platforms, and we don't want to require
- // it for people who don't need 3d plots.
- static PyObject *mpl_toolkitsmod = nullptr, *axis3dmod = nullptr;
- if (!mpl_toolkitsmod) {
- detail::_interpreter::get();
- PyObject* mpl_toolkits = PyString_FromString("mpl_toolkits");
- PyObject* axis3d = PyString_FromString("mpl_toolkits.mplot3d");
- if (!mpl_toolkits || !axis3d) { throw std::runtime_error("couldnt create string"); }
- mpl_toolkitsmod = PyImport_Import(mpl_toolkits);
- Py_DECREF(mpl_toolkits);
- if (!mpl_toolkitsmod) { throw std::runtime_error("Error loading module mpl_toolkits!"); }
- axis3dmod = PyImport_Import(axis3d);
- Py_DECREF(axis3d);
- if (!axis3dmod) { throw std::runtime_error("Error loading module mpl_toolkits.mplot3d!"); }
- }
- assert(x.size() == y.size());
- assert(y.size() == z.size());
- // using numpy arrays
- PyObject *xarray = detail::get_2darray(x);
- PyObject *yarray = detail::get_2darray(y);
- PyObject *zarray = detail::get_2darray(z);
- // construct positional args
- PyObject *args = PyTuple_New(3);
- PyTuple_SetItem(args, 0, xarray);
- PyTuple_SetItem(args, 1, yarray);
- PyTuple_SetItem(args, 2, zarray);
- // Build up the kw args.
- PyObject *kwargs = PyDict_New();
- PyDict_SetItemString(kwargs, "rstride", PyInt_FromLong(1));
- PyDict_SetItemString(kwargs, "cstride", PyInt_FromLong(1));
- PyObject *python_colormap_coolwarm = PyObject_GetAttrString(
- detail::_interpreter::get().s_python_colormap, "coolwarm");
- PyDict_SetItemString(kwargs, "cmap", python_colormap_coolwarm);
- for (std::map<std::string, std::string>::const_iterator it = keywords.begin();
- it != keywords.end(); ++it) {
- if (it->first == "linewidth" || it->first == "alpha") {
- PyDict_SetItemString(kwargs, it->first.c_str(),
- PyFloat_FromDouble(std::stod(it->second)));
- } else {
- PyDict_SetItemString(kwargs, it->first.c_str(),
- PyString_FromString(it->second.c_str()));
- }
- }
- PyObject *fig_args = PyTuple_New(1);
- PyObject* fig = nullptr;
- PyTuple_SetItem(fig_args, 0, PyLong_FromLong(fig_number));
- PyObject *fig_exists =
- PyObject_CallObject(
- detail::_interpreter::get().s_python_function_fignum_exists, fig_args);
- if (!PyObject_IsTrue(fig_exists)) {
- fig = PyObject_CallObject(detail::_interpreter::get().s_python_function_figure,
- detail::_interpreter::get().s_python_empty_tuple);
- } else {
- fig = PyObject_CallObject(detail::_interpreter::get().s_python_function_figure,
- fig_args);
- }
- Py_DECREF(fig_exists);
- if (!fig) throw std::runtime_error("Call to figure() failed.");
- PyObject *gca_kwargs = PyDict_New();
- PyDict_SetItemString(gca_kwargs, "projection", PyString_FromString("3d"));
- PyObject *gca = PyObject_GetAttrString(fig, "gca");
- if (!gca) throw std::runtime_error("No gca");
- Py_INCREF(gca);
- PyObject *axis = PyObject_Call(
- gca, detail::_interpreter::get().s_python_empty_tuple, gca_kwargs);
- if (!axis) throw std::runtime_error("No axis");
- Py_INCREF(axis);
- Py_DECREF(gca);
- Py_DECREF(gca_kwargs);
- PyObject *plot_surface = PyObject_GetAttrString(axis, "plot_surface");
- if (!plot_surface) throw std::runtime_error("No surface");
- Py_INCREF(plot_surface);
- PyObject *res = PyObject_Call(plot_surface, args, kwargs);
- if (!res) throw std::runtime_error("failed surface");
- Py_DECREF(plot_surface);
- Py_DECREF(axis);
- Py_DECREF(args);
- Py_DECREF(kwargs);
- if (res) Py_DECREF(res);
- }
- template <typename Numeric>
- void contour(const std::vector<::std::vector<Numeric>> &x,
- const std::vector<::std::vector<Numeric>> &y,
- const std::vector<::std::vector<Numeric>> &z,
- const std::map<std::string, std::string> &keywords = {})
- {
- detail::_interpreter::get();
- // using numpy arrays
- PyObject *xarray = detail::get_2darray(x);
- PyObject *yarray = detail::get_2darray(y);
- PyObject *zarray = detail::get_2darray(z);
- // construct positional args
- PyObject *args = PyTuple_New(3);
- PyTuple_SetItem(args, 0, xarray);
- PyTuple_SetItem(args, 1, yarray);
- PyTuple_SetItem(args, 2, zarray);
- // Build up the kw args.
- PyObject *kwargs = PyDict_New();
- PyObject *python_colormap_coolwarm = PyObject_GetAttrString(
- detail::_interpreter::get().s_python_colormap, "coolwarm");
- PyDict_SetItemString(kwargs, "cmap", python_colormap_coolwarm);
- for (std::map<std::string, std::string>::const_iterator it = keywords.begin();
- it != keywords.end(); ++it) {
- PyDict_SetItemString(kwargs, it->first.c_str(),
- PyString_FromString(it->second.c_str()));
- }
- PyObject *res = PyObject_Call(detail::_interpreter::get().s_python_function_contour, args, kwargs);
- if (!res)
- throw std::runtime_error("failed contour");
- Py_DECREF(args);
- Py_DECREF(kwargs);
- if (res) Py_DECREF(res);
- }
- template <typename Numeric>
- void spy(const std::vector<::std::vector<Numeric>> &x,
- const double markersize = -1, // -1 for default matplotlib size
- const std::map<std::string, std::string> &keywords = {})
- {
- detail::_interpreter::get();
- PyObject *xarray = detail::get_2darray(x);
- PyObject *kwargs = PyDict_New();
- if (markersize != -1) {
- PyDict_SetItemString(kwargs, "markersize", PyFloat_FromDouble(markersize));
- }
- for (std::map<std::string, std::string>::const_iterator it = keywords.begin();
- it != keywords.end(); ++it) {
- PyDict_SetItemString(kwargs, it->first.c_str(),
- PyString_FromString(it->second.c_str()));
- }
- PyObject *plot_args = PyTuple_New(1);
- PyTuple_SetItem(plot_args, 0, xarray);
- PyObject *res = PyObject_Call(
- detail::_interpreter::get().s_python_function_spy, plot_args, kwargs);
- Py_DECREF(plot_args);
- Py_DECREF(kwargs);
- if (res) Py_DECREF(res);
- }
- #endif // WITHOUT_NUMPY
- template <typename Numeric>
- void plot3(const std::vector<Numeric> &x,
- const std::vector<Numeric> &y,
- const std::vector<Numeric> &z,
- const std::map<std::string, std::string> &keywords =
- std::map<std::string, std::string>(),
- const long fig_number=0)
- {
- detail::_interpreter::get();
- // Same as with plot_surface: We lazily load the modules here the first time
- // this function is called because I'm not sure that we can assume "matplotlib
- // installed" implies "mpl_toolkits installed" on all platforms, and we don't
- // want to require it for people who don't need 3d plots.
- static PyObject *mpl_toolkitsmod = nullptr, *axis3dmod = nullptr;
- if (!mpl_toolkitsmod) {
- detail::_interpreter::get();
- PyObject* mpl_toolkits = PyString_FromString("mpl_toolkits");
- PyObject* axis3d = PyString_FromString("mpl_toolkits.mplot3d");
- if (!mpl_toolkits || !axis3d) { throw std::runtime_error("couldnt create string"); }
- mpl_toolkitsmod = PyImport_Import(mpl_toolkits);
- Py_DECREF(mpl_toolkits);
- if (!mpl_toolkitsmod) { throw std::runtime_error("Error loading module mpl_toolkits!"); }
- axis3dmod = PyImport_Import(axis3d);
- Py_DECREF(axis3d);
- if (!axis3dmod) { throw std::runtime_error("Error loading module mpl_toolkits.mplot3d!"); }
- }
- assert(x.size() == y.size());
- assert(y.size() == z.size());
- PyObject *xarray = detail::get_array(x);
- PyObject *yarray = detail::get_array(y);
- PyObject *zarray = detail::get_array(z);
- // construct positional args
- PyObject *args = PyTuple_New(3);
- PyTuple_SetItem(args, 0, xarray);
- PyTuple_SetItem(args, 1, yarray);
- PyTuple_SetItem(args, 2, zarray);
- // Build up the kw args.
- PyObject *kwargs = PyDict_New();
- for (std::map<std::string, std::string>::const_iterator it = keywords.begin();
- it != keywords.end(); ++it) {
- PyDict_SetItemString(kwargs, it->first.c_str(),
- PyString_FromString(it->second.c_str()));
- }
- PyObject *fig_args = PyTuple_New(1);
- PyObject* fig = nullptr;
- PyTuple_SetItem(fig_args, 0, PyLong_FromLong(fig_number));
- PyObject *fig_exists =
- PyObject_CallObject(detail::_interpreter::get().s_python_function_fignum_exists, fig_args);
- if (!PyObject_IsTrue(fig_exists)) {
- fig = PyObject_CallObject(detail::_interpreter::get().s_python_function_figure,
- detail::_interpreter::get().s_python_empty_tuple);
- } else {
- fig = PyObject_CallObject(detail::_interpreter::get().s_python_function_figure,
- fig_args);
- }
- if (!fig) throw std::runtime_error("Call to figure() failed.");
- PyObject *gca_kwargs = PyDict_New();
- PyDict_SetItemString(gca_kwargs, "projection", PyString_FromString("3d"));
- PyObject *gca = PyObject_GetAttrString(fig, "gca");
- if (!gca) throw std::runtime_error("No gca");
- Py_INCREF(gca);
- PyObject *axis = PyObject_Call(
- gca, detail::_interpreter::get().s_python_empty_tuple, gca_kwargs);
- if (!axis) throw std::runtime_error("No axis");
- Py_INCREF(axis);
- Py_DECREF(gca);
- Py_DECREF(gca_kwargs);
- PyObject *plot3 = PyObject_GetAttrString(axis, "plot");
- if (!plot3) throw std::runtime_error("No 3D line plot");
- Py_INCREF(plot3);
- PyObject *res = PyObject_Call(plot3, args, kwargs);
- if (!res) throw std::runtime_error("Failed 3D line plot");
- Py_DECREF(plot3);
- Py_DECREF(axis);
- Py_DECREF(args);
- Py_DECREF(kwargs);
- if (res) Py_DECREF(res);
- }
- template<typename Numeric>
- bool stem(const std::vector<Numeric> &x, const std::vector<Numeric> &y, const std::map<std::string, std::string>& keywords)
- {
- assert(x.size() == y.size());
- detail::_interpreter::get();
- // using numpy arrays
- PyObject* xarray = detail::get_array(x);
- PyObject* yarray = detail::get_array(y);
- // construct positional args
- PyObject* args = PyTuple_New(2);
- PyTuple_SetItem(args, 0, xarray);
- PyTuple_SetItem(args, 1, yarray);
- // construct keyword args
- PyObject* kwargs = PyDict_New();
- for (std::map<std::string, std::string>::const_iterator it =
- keywords.begin(); it != keywords.end(); ++it) {
- PyDict_SetItemString(kwargs, it->first.c_str(),
- PyString_FromString(it->second.c_str()));
- }
- PyObject* res = PyObject_Call(
- detail::_interpreter::get().s_python_function_stem, args, kwargs);
- Py_DECREF(args);
- Py_DECREF(kwargs);
- if (res)
- Py_DECREF(res);
- return res;
- }
- template< typename Numeric >
- bool fill(const std::vector<Numeric>& x, const std::vector<Numeric>& y, const std::map<std::string, std::string>& keywords)
- {
- assert(x.size() == y.size());
- detail::_interpreter::get();
- // using numpy arrays
- PyObject* xarray = detail::get_array(x);
- PyObject* yarray = detail::get_array(y);
- // construct positional args
- PyObject* args = PyTuple_New(2);
- PyTuple_SetItem(args, 0, xarray);
- PyTuple_SetItem(args, 1, yarray);
- // construct keyword args
- PyObject* kwargs = PyDict_New();
- for (auto it = keywords.begin(); it != keywords.end(); ++it) {
- PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str()));
- }
- PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_fill, args, kwargs);
- Py_DECREF(args);
- Py_DECREF(kwargs);
- if (res) Py_DECREF(res);
- return res;
- }
- template< typename Numeric >
- bool fill_between(const std::vector<Numeric>& x, const std::vector<Numeric>& y1, const std::vector<Numeric>& y2, const std::map<std::string, std::string>& keywords)
- {
- assert(x.size() == y1.size());
- assert(x.size() == y2.size());
- detail::_interpreter::get();
- // using numpy arrays
- PyObject* xarray = detail::get_array(x);
- PyObject* y1array = detail::get_array(y1);
- PyObject* y2array = detail::get_array(y2);
- // construct positional args
- PyObject* args = PyTuple_New(3);
- PyTuple_SetItem(args, 0, xarray);
- PyTuple_SetItem(args, 1, y1array);
- PyTuple_SetItem(args, 2, y2array);
- // construct keyword args
- PyObject* kwargs = PyDict_New();
- for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it) {
- PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str()));
- }
- PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_fill_between, args, kwargs);
- Py_DECREF(args);
- Py_DECREF(kwargs);
- if(res) Py_DECREF(res);
- return res;
- }
- template <typename Numeric>
- bool arrow(Numeric x, Numeric y, Numeric end_x, Numeric end_y, const std::string& fc = "r",
- const std::string ec = "k", Numeric head_length = 0.25, Numeric head_width = 0.1625) {
- PyObject* obj_x = PyFloat_FromDouble(x);
- PyObject* obj_y = PyFloat_FromDouble(y);
- PyObject* obj_end_x = PyFloat_FromDouble(end_x);
- PyObject* obj_end_y = PyFloat_FromDouble(end_y);
- PyObject* kwargs = PyDict_New();
- PyDict_SetItemString(kwargs, "fc", PyString_FromString(fc.c_str()));
- PyDict_SetItemString(kwargs, "ec", PyString_FromString(ec.c_str()));
- PyDict_SetItemString(kwargs, "head_width", PyFloat_FromDouble(head_width));
- PyDict_SetItemString(kwargs, "head_length", PyFloat_FromDouble(head_length));
- PyObject* plot_args = PyTuple_New(4);
- PyTuple_SetItem(plot_args, 0, obj_x);
- PyTuple_SetItem(plot_args, 1, obj_y);
- PyTuple_SetItem(plot_args, 2, obj_end_x);
- PyTuple_SetItem(plot_args, 3, obj_end_y);
- PyObject* res =
- PyObject_Call(detail::_interpreter::get().s_python_function_arrow, plot_args, kwargs);
- Py_DECREF(plot_args);
- Py_DECREF(kwargs);
- if (res)
- Py_DECREF(res);
- return res;
- }
- template< typename Numeric>
- bool hist(const std::vector<Numeric>& y, long bins=10,std::string color="b",
- double alpha=1.0, bool cumulative=false)
- {
- detail::_interpreter::get();
- PyObject* yarray = detail::get_array(y);
- PyObject* kwargs = PyDict_New();
- PyDict_SetItemString(kwargs, "bins", PyLong_FromLong(bins));
- PyDict_SetItemString(kwargs, "color", PyString_FromString(color.c_str()));
- PyDict_SetItemString(kwargs, "alpha", PyFloat_FromDouble(alpha));
- PyDict_SetItemString(kwargs, "cumulative", cumulative ? Py_True : Py_False);
- PyObject* plot_args = PyTuple_New(1);
- PyTuple_SetItem(plot_args, 0, yarray);
- PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_hist, plot_args, kwargs);
- Py_DECREF(plot_args);
- Py_DECREF(kwargs);
- if(res) Py_DECREF(res);
- return res;
- }
- #ifndef WITHOUT_NUMPY
- namespace detail {
- inline void imshow(void *ptr, const NPY_TYPES type, const int rows, const int columns, const int colors, const std::map<std::string, std::string> &keywords, PyObject** out)
- {
- assert(type == NPY_UINT8 || type == NPY_FLOAT);
- assert(colors == 1 || colors == 3 || colors == 4);
- detail::_interpreter::get();
- // construct args
- npy_intp dims[3] = { rows, columns, colors };
- PyObject *args = PyTuple_New(1);
- PyTuple_SetItem(args, 0, PyArray_SimpleNewFromData(colors == 1 ? 2 : 3, dims, type, ptr));
- // construct keyword args
- PyObject* kwargs = PyDict_New();
- for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it)
- {
- PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str()));
- }
- PyObject *res = PyObject_Call(detail::_interpreter::get().s_python_function_imshow, args, kwargs);
- Py_DECREF(args);
- Py_DECREF(kwargs);
- if (!res)
- throw std::runtime_error("Call to imshow() failed");
- if (out)
- *out = res;
- else
- Py_DECREF(res);
- }
- } // namespace detail
- inline void imshow(const unsigned char *ptr, const int rows, const int columns, const int colors, const std::map<std::string, std::string> &keywords = {}, PyObject** out = nullptr)
- {
- detail::imshow((void *) ptr, NPY_UINT8, rows, columns, colors, keywords, out);
- }
- inline void imshow(const float *ptr, const int rows, const int columns, const int colors, const std::map<std::string, std::string> &keywords = {}, PyObject** out = nullptr)
- {
- detail::imshow((void *) ptr, NPY_FLOAT, rows, columns, colors, keywords, out);
- }
- #ifdef WITH_OPENCV
- void imshow(const cv::Mat &image, const std::map<std::string, std::string> &keywords = {})
- {
- // Convert underlying type of matrix, if needed
- cv::Mat image2;
- NPY_TYPES npy_type = NPY_UINT8;
- switch (image.type() & CV_MAT_DEPTH_MASK) {
- case CV_8U:
- image2 = image;
- break;
- case CV_32F:
- image2 = image;
- npy_type = NPY_FLOAT;
- break;
- default:
- image.convertTo(image2, CV_MAKETYPE(CV_8U, image.channels()));
- }
- // If color image, convert from BGR to RGB
- switch (image2.channels()) {
- case 3:
- cv::cvtColor(image2, image2, CV_BGR2RGB);
- break;
- case 4:
- cv::cvtColor(image2, image2, CV_BGRA2RGBA);
- }
- detail::imshow(image2.data, npy_type, image2.rows, image2.cols, image2.channels(), keywords);
- }
- #endif // WITH_OPENCV
- #endif // WITHOUT_NUMPY
- template<typename NumericX, typename NumericY>
- bool scatter(const std::vector<NumericX>& x,
- const std::vector<NumericY>& y,
- const double s=1.0, // The marker size in points**2
- const std::map<std::string, std::string> & keywords = {})
- {
- detail::_interpreter::get();
- assert(x.size() == y.size());
- PyObject* xarray = detail::get_array(x);
- PyObject* yarray = detail::get_array(y);
- PyObject* kwargs = PyDict_New();
- PyDict_SetItemString(kwargs, "s", PyLong_FromLong(s));
- for (const auto& it : keywords)
- {
- PyDict_SetItemString(kwargs, it.first.c_str(), PyString_FromString(it.second.c_str()));
- }
- PyObject* plot_args = PyTuple_New(2);
- PyTuple_SetItem(plot_args, 0, xarray);
- PyTuple_SetItem(plot_args, 1, yarray);
- PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_scatter, plot_args, kwargs);
- Py_DECREF(plot_args);
- Py_DECREF(kwargs);
- if(res) Py_DECREF(res);
- return res;
- }
- template<typename NumericX, typename NumericY, typename NumericColors>
- bool scatter_colored(const std::vector<NumericX>& x,
- const std::vector<NumericY>& y,
- const std::vector<NumericColors>& colors,
- const double s=1.0, // The marker size in points**2
- const std::map<std::string, std::string> & keywords = {})
- {
- detail::_interpreter::get();
- assert(x.size() == y.size());
- PyObject* xarray = detail::get_array(x);
- PyObject* yarray = detail::get_array(y);
- PyObject* colors_array = detail::get_array(colors);
- PyObject* kwargs = PyDict_New();
- PyDict_SetItemString(kwargs, "s", PyLong_FromLong(s));
- PyDict_SetItemString(kwargs, "c", colors_array);
- for (const auto& it : keywords)
- {
- PyDict_SetItemString(kwargs, it.first.c_str(), PyString_FromString(it.second.c_str()));
- }
- PyObject* plot_args = PyTuple_New(2);
- PyTuple_SetItem(plot_args, 0, xarray);
- PyTuple_SetItem(plot_args, 1, yarray);
- PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_scatter, plot_args, kwargs);
- Py_DECREF(plot_args);
- Py_DECREF(kwargs);
- if(res) Py_DECREF(res);
- return res;
- }
-
- template<typename NumericX, typename NumericY, typename NumericZ>
- bool scatter(const std::vector<NumericX>& x,
- const std::vector<NumericY>& y,
- const std::vector<NumericZ>& z,
- const double s=1.0, // The marker size in points**2
- const std::map<std::string, std::string> & keywords = {},
- const long fig_number=0) {
- detail::_interpreter::get();
- // Same as with plot_surface: We lazily load the modules here the first time
- // this function is called because I'm not sure that we can assume "matplotlib
- // installed" implies "mpl_toolkits installed" on all platforms, and we don't
- // want to require it for people who don't need 3d plots.
- static PyObject *mpl_toolkitsmod = nullptr, *axis3dmod = nullptr;
- if (!mpl_toolkitsmod) {
- detail::_interpreter::get();
- PyObject* mpl_toolkits = PyString_FromString("mpl_toolkits");
- PyObject* axis3d = PyString_FromString("mpl_toolkits.mplot3d");
- if (!mpl_toolkits || !axis3d) { throw std::runtime_error("couldnt create string"); }
- mpl_toolkitsmod = PyImport_Import(mpl_toolkits);
- Py_DECREF(mpl_toolkits);
- if (!mpl_toolkitsmod) { throw std::runtime_error("Error loading module mpl_toolkits!"); }
- axis3dmod = PyImport_Import(axis3d);
- Py_DECREF(axis3d);
- if (!axis3dmod) { throw std::runtime_error("Error loading module mpl_toolkits.mplot3d!"); }
- }
- assert(x.size() == y.size());
- assert(y.size() == z.size());
- PyObject *xarray = detail::get_array(x);
- PyObject *yarray = detail::get_array(y);
- PyObject *zarray = detail::get_array(z);
- // construct positional args
- PyObject *args = PyTuple_New(3);
- PyTuple_SetItem(args, 0, xarray);
- PyTuple_SetItem(args, 1, yarray);
- PyTuple_SetItem(args, 2, zarray);
- // Build up the kw args.
- PyObject *kwargs = PyDict_New();
- for (std::map<std::string, std::string>::const_iterator it = keywords.begin();
- it != keywords.end(); ++it) {
- PyDict_SetItemString(kwargs, it->first.c_str(),
- PyString_FromString(it->second.c_str()));
- }
- PyObject *fig_args = PyTuple_New(1);
- PyObject* fig = nullptr;
- PyTuple_SetItem(fig_args, 0, PyLong_FromLong(fig_number));
- PyObject *fig_exists =
- PyObject_CallObject(detail::_interpreter::get().s_python_function_fignum_exists, fig_args);
- if (!PyObject_IsTrue(fig_exists)) {
- fig = PyObject_CallObject(detail::_interpreter::get().s_python_function_figure,
- detail::_interpreter::get().s_python_empty_tuple);
- } else {
- fig = PyObject_CallObject(detail::_interpreter::get().s_python_function_figure,
- fig_args);
- }
- Py_DECREF(fig_exists);
- if (!fig) throw std::runtime_error("Call to figure() failed.");
- PyObject *gca_kwargs = PyDict_New();
- PyDict_SetItemString(gca_kwargs, "projection", PyString_FromString("3d"));
- PyObject *gca = PyObject_GetAttrString(fig, "gca");
- if (!gca) throw std::runtime_error("No gca");
- Py_INCREF(gca);
- PyObject *axis = PyObject_Call(
- gca, detail::_interpreter::get().s_python_empty_tuple, gca_kwargs);
- if (!axis) throw std::runtime_error("No axis");
- Py_INCREF(axis);
- Py_DECREF(gca);
- Py_DECREF(gca_kwargs);
- PyObject *plot3 = PyObject_GetAttrString(axis, "scatter");
- if (!plot3) throw std::runtime_error("No 3D line plot");
- Py_INCREF(plot3);
- PyObject *res = PyObject_Call(plot3, args, kwargs);
- if (!res) throw std::runtime_error("Failed 3D line plot");
- Py_DECREF(plot3);
- Py_DECREF(axis);
- Py_DECREF(args);
- Py_DECREF(kwargs);
- Py_DECREF(fig);
- if (res) Py_DECREF(res);
- return res;
- }
- template<typename Numeric>
- bool boxplot(const std::vector<std::vector<Numeric>>& data,
- const std::vector<std::string>& labels = {},
- const std::map<std::string, std::string> & keywords = {})
- {
- detail::_interpreter::get();
- PyObject* listlist = detail::get_listlist(data);
- PyObject* args = PyTuple_New(1);
- PyTuple_SetItem(args, 0, listlist);
- PyObject* kwargs = PyDict_New();
- // kwargs needs the labels, if there are (the correct number of) labels
- if (!labels.empty() && labels.size() == data.size()) {
- PyDict_SetItemString(kwargs, "labels", detail::get_array(labels));
- }
- // take care of the remaining keywords
- for (const auto& it : keywords)
- {
- PyDict_SetItemString(kwargs, it.first.c_str(), PyString_FromString(it.second.c_str()));
- }
- PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_boxplot, args, kwargs);
- Py_DECREF(args);
- Py_DECREF(kwargs);
- if(res) Py_DECREF(res);
- return res;
- }
- template<typename Numeric>
- bool boxplot(const std::vector<Numeric>& data,
- const std::map<std::string, std::string> & keywords = {})
- {
- detail::_interpreter::get();
- PyObject* vector = detail::get_array(data);
- PyObject* args = PyTuple_New(1);
- PyTuple_SetItem(args, 0, vector);
- PyObject* kwargs = PyDict_New();
- for (const auto& it : keywords)
- {
- PyDict_SetItemString(kwargs, it.first.c_str(), PyString_FromString(it.second.c_str()));
- }
- PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_boxplot, args, kwargs);
- Py_DECREF(args);
- Py_DECREF(kwargs);
- if(res) Py_DECREF(res);
- return res;
- }
- template <typename Numeric>
- bool bar(const std::vector<Numeric> & x,
- const std::vector<Numeric> & y,
- std::string ec = "black",
- std::string ls = "-",
- double lw = 1.0,
- const std::map<std::string, std::string> & keywords = {})
- {
- detail::_interpreter::get();
- PyObject * xarray = detail::get_array(x);
- PyObject * yarray = detail::get_array(y);
- PyObject * kwargs = PyDict_New();
- PyDict_SetItemString(kwargs, "ec", PyString_FromString(ec.c_str()));
- PyDict_SetItemString(kwargs, "ls", PyString_FromString(ls.c_str()));
- PyDict_SetItemString(kwargs, "lw", PyFloat_FromDouble(lw));
- for (std::map<std::string, std::string>::const_iterator it =
- keywords.begin();
- it != keywords.end();
- ++it) {
- PyDict_SetItemString(
- kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str()));
- }
- PyObject * plot_args = PyTuple_New(2);
- PyTuple_SetItem(plot_args, 0, xarray);
- PyTuple_SetItem(plot_args, 1, yarray);
- PyObject * res = PyObject_Call(
- detail::_interpreter::get().s_python_function_bar, plot_args, kwargs);
- Py_DECREF(plot_args);
- Py_DECREF(kwargs);
- if (res) Py_DECREF(res);
- return res;
- }
- template <typename Numeric>
- bool bar(const std::vector<Numeric> & y,
- std::string ec = "black",
- std::string ls = "-",
- double lw = 1.0,
- const std::map<std::string, std::string> & keywords = {})
- {
- using T = typename std::remove_reference<decltype(y)>::type::value_type;
- detail::_interpreter::get();
- std::vector<T> x;
- for (std::size_t i = 0; i < y.size(); i++) { x.push_back(i); }
- return bar(x, y, ec, ls, lw, keywords);
- }
- template<typename Numeric>
- bool barh(const std::vector<Numeric> &x, const std::vector<Numeric> &y, std::string ec = "black", std::string ls = "-", double lw = 1.0, const std::map<std::string, std::string> &keywords = { }) {
- PyObject *xarray = detail::get_array(x);
- PyObject *yarray = detail::get_array(y);
- PyObject *kwargs = PyDict_New();
- PyDict_SetItemString(kwargs, "ec", PyString_FromString(ec.c_str()));
- PyDict_SetItemString(kwargs, "ls", PyString_FromString(ls.c_str()));
- PyDict_SetItemString(kwargs, "lw", PyFloat_FromDouble(lw));
- for (std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it) {
- PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str()));
- }
- PyObject *plot_args = PyTuple_New(2);
- PyTuple_SetItem(plot_args, 0, xarray);
- PyTuple_SetItem(plot_args, 1, yarray);
- PyObject *res = PyObject_Call(detail::_interpreter::get().s_python_function_barh, plot_args, kwargs);
- Py_DECREF(plot_args);
- Py_DECREF(kwargs);
- if (res) Py_DECREF(res);
- return res;
- }
- inline bool subplots_adjust(const std::map<std::string, double>& keywords = {})
- {
- detail::_interpreter::get();
- PyObject* kwargs = PyDict_New();
- for (std::map<std::string, double>::const_iterator it =
- keywords.begin(); it != keywords.end(); ++it) {
- PyDict_SetItemString(kwargs, it->first.c_str(),
- PyFloat_FromDouble(it->second));
- }
- PyObject* plot_args = PyTuple_New(0);
- PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_subplots_adjust, plot_args, kwargs);
- Py_DECREF(plot_args);
- Py_DECREF(kwargs);
- if(res) Py_DECREF(res);
- return res;
- }
- template< typename Numeric>
- bool named_hist(std::string label,const std::vector<Numeric>& y, long bins=10, std::string color="b", double alpha=1.0)
- {
- detail::_interpreter::get();
- PyObject* yarray = detail::get_array(y);
- PyObject* kwargs = PyDict_New();
- PyDict_SetItemString(kwargs, "label", PyString_FromString(label.c_str()));
- PyDict_SetItemString(kwargs, "bins", PyLong_FromLong(bins));
- PyDict_SetItemString(kwargs, "color", PyString_FromString(color.c_str()));
- PyDict_SetItemString(kwargs, "alpha", PyFloat_FromDouble(alpha));
- PyObject* plot_args = PyTuple_New(1);
- PyTuple_SetItem(plot_args, 0, yarray);
- PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_hist, plot_args, kwargs);
- Py_DECREF(plot_args);
- Py_DECREF(kwargs);
- if(res) Py_DECREF(res);
- return res;
- }
- template<typename NumericX, typename NumericY>
- bool plot(const std::vector<NumericX>& x, const std::vector<NumericY>& y, const std::string& s = "")
- {
- assert(x.size() == y.size());
- detail::_interpreter::get();
- PyObject* xarray = detail::get_array(x);
- PyObject* yarray = detail::get_array(y);
- PyObject* pystring = PyString_FromString(s.c_str());
- PyObject* plot_args = PyTuple_New(3);
- PyTuple_SetItem(plot_args, 0, xarray);
- PyTuple_SetItem(plot_args, 1, yarray);
- PyTuple_SetItem(plot_args, 2, pystring);
- PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_plot, plot_args);
- Py_DECREF(plot_args);
- if(res) Py_DECREF(res);
- return res;
- }
- template <typename NumericX, typename NumericY, typename NumericZ>
- bool contour(const std::vector<NumericX>& x, const std::vector<NumericY>& y,
- const std::vector<NumericZ>& z,
- const std::map<std::string, std::string>& keywords = {}) {
- assert(x.size() == y.size() && x.size() == z.size());
- PyObject* xarray = detail::get_array(x);
- PyObject* yarray = detail::get_array(y);
- PyObject* zarray = detail::get_array(z);
- PyObject* plot_args = PyTuple_New(3);
- PyTuple_SetItem(plot_args, 0, xarray);
- PyTuple_SetItem(plot_args, 1, yarray);
- PyTuple_SetItem(plot_args, 2, zarray);
- // construct keyword args
- PyObject* kwargs = PyDict_New();
- for (std::map<std::string, std::string>::const_iterator it = keywords.begin();
- it != keywords.end(); ++it) {
- PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str()));
- }
- PyObject* res =
- PyObject_Call(detail::_interpreter::get().s_python_function_contour, plot_args, kwargs);
- Py_DECREF(kwargs);
- Py_DECREF(plot_args);
- if (res)
- Py_DECREF(res);
- return res;
- }
- template<typename NumericX, typename NumericY, typename NumericU, typename NumericW>
- bool quiver(const std::vector<NumericX>& x, const std::vector<NumericY>& y, const std::vector<NumericU>& u, const std::vector<NumericW>& w, const std::map<std::string, std::string>& keywords = {})
- {
- assert(x.size() == y.size() && x.size() == u.size() && u.size() == w.size());
- detail::_interpreter::get();
- PyObject* xarray = detail::get_array(x);
- PyObject* yarray = detail::get_array(y);
- PyObject* uarray = detail::get_array(u);
- PyObject* warray = detail::get_array(w);
- PyObject* plot_args = PyTuple_New(4);
- PyTuple_SetItem(plot_args, 0, xarray);
- PyTuple_SetItem(plot_args, 1, yarray);
- PyTuple_SetItem(plot_args, 2, uarray);
- PyTuple_SetItem(plot_args, 3, warray);
- // construct keyword args
- PyObject* kwargs = PyDict_New();
- for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it)
- {
- PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str()));
- }
- PyObject* res = PyObject_Call(
- detail::_interpreter::get().s_python_function_quiver, plot_args, kwargs);
- Py_DECREF(kwargs);
- Py_DECREF(plot_args);
- if (res)
- Py_DECREF(res);
- return res;
- }
- template<typename NumericX, typename NumericY, typename NumericZ, typename NumericU, typename NumericW, typename NumericV>
- bool quiver(const std::vector<NumericX>& x, const std::vector<NumericY>& y, const std::vector<NumericZ>& z, const std::vector<NumericU>& u, const std::vector<NumericW>& w, const std::vector<NumericV>& v, const std::map<std::string, std::string>& keywords = {})
- {
- //set up 3d axes stuff
- static PyObject *mpl_toolkitsmod = nullptr, *axis3dmod = nullptr;
- if (!mpl_toolkitsmod) {
- detail::_interpreter::get();
- PyObject* mpl_toolkits = PyString_FromString("mpl_toolkits");
- PyObject* axis3d = PyString_FromString("mpl_toolkits.mplot3d");
- if (!mpl_toolkits || !axis3d) { throw std::runtime_error("couldnt create string"); }
- mpl_toolkitsmod = PyImport_Import(mpl_toolkits);
- Py_DECREF(mpl_toolkits);
- if (!mpl_toolkitsmod) { throw std::runtime_error("Error loading module mpl_toolkits!"); }
- axis3dmod = PyImport_Import(axis3d);
- Py_DECREF(axis3d);
- if (!axis3dmod) { throw std::runtime_error("Error loading module mpl_toolkits.mplot3d!"); }
- }
-
- //assert sizes match up
- assert(x.size() == y.size() && x.size() == u.size() && u.size() == w.size() && x.size() == z.size() && x.size() == v.size() && u.size() == v.size());
- //set up parameters
- detail::_interpreter::get();
- PyObject* xarray = detail::get_array(x);
- PyObject* yarray = detail::get_array(y);
- PyObject* zarray = detail::get_array(z);
- PyObject* uarray = detail::get_array(u);
- PyObject* warray = detail::get_array(w);
- PyObject* varray = detail::get_array(v);
- PyObject* plot_args = PyTuple_New(6);
- PyTuple_SetItem(plot_args, 0, xarray);
- PyTuple_SetItem(plot_args, 1, yarray);
- PyTuple_SetItem(plot_args, 2, zarray);
- PyTuple_SetItem(plot_args, 3, uarray);
- PyTuple_SetItem(plot_args, 4, warray);
- PyTuple_SetItem(plot_args, 5, varray);
- // construct keyword args
- PyObject* kwargs = PyDict_New();
- for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it)
- {
- PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str()));
- }
-
- //get figure gca to enable 3d projection
- PyObject *fig =
- PyObject_CallObject(detail::_interpreter::get().s_python_function_figure,
- detail::_interpreter::get().s_python_empty_tuple);
- if (!fig) throw std::runtime_error("Call to figure() failed.");
- PyObject *gca_kwargs = PyDict_New();
- PyDict_SetItemString(gca_kwargs, "projection", PyString_FromString("3d"));
- PyObject *gca = PyObject_GetAttrString(fig, "gca");
- if (!gca) throw std::runtime_error("No gca");
- Py_INCREF(gca);
- PyObject *axis = PyObject_Call(
- gca, detail::_interpreter::get().s_python_empty_tuple, gca_kwargs);
- if (!axis) throw std::runtime_error("No axis");
- Py_INCREF(axis);
- Py_DECREF(gca);
- Py_DECREF(gca_kwargs);
-
- //plot our boys bravely, plot them strongly, plot them with a wink and clap
- PyObject *plot3 = PyObject_GetAttrString(axis, "quiver");
- if (!plot3) throw std::runtime_error("No 3D line plot");
- Py_INCREF(plot3);
- PyObject* res = PyObject_Call(
- plot3, plot_args, kwargs);
- if (!res) throw std::runtime_error("Failed 3D plot");
- Py_DECREF(plot3);
- Py_DECREF(axis);
- Py_DECREF(kwargs);
- Py_DECREF(plot_args);
- if (res)
- Py_DECREF(res);
- return res;
- }
- template<typename NumericX, typename NumericY>
- bool stem(const std::vector<NumericX>& x, const std::vector<NumericY>& y, const std::string& s = "")
- {
- assert(x.size() == y.size());
- detail::_interpreter::get();
- PyObject* xarray = detail::get_array(x);
- PyObject* yarray = detail::get_array(y);
- PyObject* pystring = PyString_FromString(s.c_str());
- PyObject* plot_args = PyTuple_New(3);
- PyTuple_SetItem(plot_args, 0, xarray);
- PyTuple_SetItem(plot_args, 1, yarray);
- PyTuple_SetItem(plot_args, 2, pystring);
- PyObject* res = PyObject_CallObject(
- detail::_interpreter::get().s_python_function_stem, plot_args);
- Py_DECREF(plot_args);
- if (res)
- Py_DECREF(res);
- return res;
- }
- template<typename NumericX, typename NumericY>
- bool semilogx(const std::vector<NumericX>& x, const std::vector<NumericY>& y, const std::string& s = "")
- {
- assert(x.size() == y.size());
- detail::_interpreter::get();
- PyObject* xarray = detail::get_array(x);
- PyObject* yarray = detail::get_array(y);
- PyObject* pystring = PyString_FromString(s.c_str());
- PyObject* plot_args = PyTuple_New(3);
- PyTuple_SetItem(plot_args, 0, xarray);
- PyTuple_SetItem(plot_args, 1, yarray);
- PyTuple_SetItem(plot_args, 2, pystring);
- PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_semilogx, plot_args);
- Py_DECREF(plot_args);
- if(res) Py_DECREF(res);
- return res;
- }
- template<typename NumericX, typename NumericY>
- bool semilogy(const std::vector<NumericX>& x, const std::vector<NumericY>& y, const std::string& s = "")
- {
- assert(x.size() == y.size());
- detail::_interpreter::get();
- PyObject* xarray = detail::get_array(x);
- PyObject* yarray = detail::get_array(y);
- PyObject* pystring = PyString_FromString(s.c_str());
- PyObject* plot_args = PyTuple_New(3);
- PyTuple_SetItem(plot_args, 0, xarray);
- PyTuple_SetItem(plot_args, 1, yarray);
- PyTuple_SetItem(plot_args, 2, pystring);
- PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_semilogy, plot_args);
- Py_DECREF(plot_args);
- if(res) Py_DECREF(res);
- return res;
- }
- template<typename NumericX, typename NumericY>
- bool loglog(const std::vector<NumericX>& x, const std::vector<NumericY>& y, const std::string& s = "")
- {
- assert(x.size() == y.size());
- detail::_interpreter::get();
- PyObject* xarray = detail::get_array(x);
- PyObject* yarray = detail::get_array(y);
- PyObject* pystring = PyString_FromString(s.c_str());
- PyObject* plot_args = PyTuple_New(3);
- PyTuple_SetItem(plot_args, 0, xarray);
- PyTuple_SetItem(plot_args, 1, yarray);
- PyTuple_SetItem(plot_args, 2, pystring);
- PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_loglog, plot_args);
- Py_DECREF(plot_args);
- if(res) Py_DECREF(res);
- return res;
- }
- template<typename NumericX, typename NumericY>
- bool errorbar(const std::vector<NumericX> &x, const std::vector<NumericY> &y, const std::vector<NumericX> &yerr, const std::map<std::string, std::string> &keywords = {})
- {
- assert(x.size() == y.size());
- detail::_interpreter::get();
- PyObject* xarray = detail::get_array(x);
- PyObject* yarray = detail::get_array(y);
- PyObject* yerrarray = detail::get_array(yerr);
- // construct keyword args
- PyObject* kwargs = PyDict_New();
- for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it)
- {
- PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str()));
- }
- PyDict_SetItemString(kwargs, "yerr", yerrarray);
- PyObject *plot_args = PyTuple_New(2);
- PyTuple_SetItem(plot_args, 0, xarray);
- PyTuple_SetItem(plot_args, 1, yarray);
- PyObject *res = PyObject_Call(detail::_interpreter::get().s_python_function_errorbar, plot_args, kwargs);
- Py_DECREF(kwargs);
- Py_DECREF(plot_args);
- if (res)
- Py_DECREF(res);
- else
- throw std::runtime_error("Call to errorbar() failed.");
- return res;
- }
- template<typename Numeric>
- bool named_plot(const std::string& name, const std::vector<Numeric>& y, const std::string& format = "")
- {
- detail::_interpreter::get();
- PyObject* kwargs = PyDict_New();
- PyDict_SetItemString(kwargs, "label", PyString_FromString(name.c_str()));
- PyObject* yarray = detail::get_array(y);
- PyObject* pystring = PyString_FromString(format.c_str());
- PyObject* plot_args = PyTuple_New(2);
- PyTuple_SetItem(plot_args, 0, yarray);
- PyTuple_SetItem(plot_args, 1, pystring);
- PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_plot, plot_args, kwargs);
- Py_DECREF(kwargs);
- Py_DECREF(plot_args);
- if (res) Py_DECREF(res);
- return res;
- }
- template<typename NumericX, typename NumericY>
- bool named_plot(const std::string& name, const std::vector<NumericX>& x, const std::vector<NumericY>& y, const std::string& format = "")
- {
- detail::_interpreter::get();
- PyObject* kwargs = PyDict_New();
- PyDict_SetItemString(kwargs, "label", PyString_FromString(name.c_str()));
- PyObject* xarray = detail::get_array(x);
- PyObject* yarray = detail::get_array(y);
- PyObject* pystring = PyString_FromString(format.c_str());
- PyObject* plot_args = PyTuple_New(3);
- PyTuple_SetItem(plot_args, 0, xarray);
- PyTuple_SetItem(plot_args, 1, yarray);
- PyTuple_SetItem(plot_args, 2, pystring);
- PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_plot, plot_args, kwargs);
- Py_DECREF(kwargs);
- Py_DECREF(plot_args);
- if (res) Py_DECREF(res);
- return res;
- }
- template<typename NumericX, typename NumericY>
- bool named_semilogx(const std::string& name, const std::vector<NumericX>& x, const std::vector<NumericY>& y, const std::string& format = "")
- {
- detail::_interpreter::get();
- PyObject* kwargs = PyDict_New();
- PyDict_SetItemString(kwargs, "label", PyString_FromString(name.c_str()));
- PyObject* xarray = detail::get_array(x);
- PyObject* yarray = detail::get_array(y);
- PyObject* pystring = PyString_FromString(format.c_str());
- PyObject* plot_args = PyTuple_New(3);
- PyTuple_SetItem(plot_args, 0, xarray);
- PyTuple_SetItem(plot_args, 1, yarray);
- PyTuple_SetItem(plot_args, 2, pystring);
- PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_semilogx, plot_args, kwargs);
- Py_DECREF(kwargs);
- Py_DECREF(plot_args);
- if (res) Py_DECREF(res);
- return res;
- }
- template<typename NumericX, typename NumericY>
- bool named_semilogy(const std::string& name, const std::vector<NumericX>& x, const std::vector<NumericY>& y, const std::string& format = "")
- {
- detail::_interpreter::get();
- PyObject* kwargs = PyDict_New();
- PyDict_SetItemString(kwargs, "label", PyString_FromString(name.c_str()));
- PyObject* xarray = detail::get_array(x);
- PyObject* yarray = detail::get_array(y);
- PyObject* pystring = PyString_FromString(format.c_str());
- PyObject* plot_args = PyTuple_New(3);
- PyTuple_SetItem(plot_args, 0, xarray);
- PyTuple_SetItem(plot_args, 1, yarray);
- PyTuple_SetItem(plot_args, 2, pystring);
- PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_semilogy, plot_args, kwargs);
- Py_DECREF(kwargs);
- Py_DECREF(plot_args);
- if (res) Py_DECREF(res);
- return res;
- }
- template<typename NumericX, typename NumericY>
- bool named_loglog(const std::string& name, const std::vector<NumericX>& x, const std::vector<NumericY>& y, const std::string& format = "")
- {
- detail::_interpreter::get();
- PyObject* kwargs = PyDict_New();
- PyDict_SetItemString(kwargs, "label", PyString_FromString(name.c_str()));
- PyObject* xarray = detail::get_array(x);
- PyObject* yarray = detail::get_array(y);
- PyObject* pystring = PyString_FromString(format.c_str());
- PyObject* plot_args = PyTuple_New(3);
- PyTuple_SetItem(plot_args, 0, xarray);
- PyTuple_SetItem(plot_args, 1, yarray);
- PyTuple_SetItem(plot_args, 2, pystring);
- PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_loglog, plot_args, kwargs);
- Py_DECREF(kwargs);
- Py_DECREF(plot_args);
- if (res) Py_DECREF(res);
- return res;
- }
- template<typename Numeric>
- bool plot(const std::vector<Numeric>& y, const std::string& format = "")
- {
- std::vector<Numeric> x(y.size());
- for(size_t i=0; i<x.size(); ++i) x.at(i) = i;
- return plot(x,y,format);
- }
- template<typename Numeric>
- bool plot(const std::vector<Numeric>& y, const std::map<std::string, std::string>& keywords)
- {
- std::vector<Numeric> x(y.size());
- for(size_t i=0; i<x.size(); ++i) x.at(i) = i;
- return plot(x,y,keywords);
- }
- template<typename Numeric>
- bool stem(const std::vector<Numeric>& y, const std::string& format = "")
- {
- std::vector<Numeric> x(y.size());
- for (size_t i = 0; i < x.size(); ++i) x.at(i) = i;
- return stem(x, y, format);
- }
- template<typename Numeric>
- void text(Numeric x, Numeric y, const std::string& s = "")
- {
- detail::_interpreter::get();
- PyObject* args = PyTuple_New(3);
- PyTuple_SetItem(args, 0, PyFloat_FromDouble(x));
- PyTuple_SetItem(args, 1, PyFloat_FromDouble(y));
- PyTuple_SetItem(args, 2, PyString_FromString(s.c_str()));
- PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_text, args);
- if(!res) throw std::runtime_error("Call to text() failed.");
- Py_DECREF(args);
- Py_DECREF(res);
- }
- inline void colorbar(PyObject* mappable = NULL, const std::map<std::string, float>& keywords = {})
- {
- if (mappable == NULL)
- throw std::runtime_error("Must call colorbar with PyObject* returned from an image, contour, surface, etc.");
- detail::_interpreter::get();
- PyObject* args = PyTuple_New(1);
- PyTuple_SetItem(args, 0, mappable);
- PyObject* kwargs = PyDict_New();
- for(std::map<std::string, float>::const_iterator it = keywords.begin(); it != keywords.end(); ++it)
- {
- PyDict_SetItemString(kwargs, it->first.c_str(), PyFloat_FromDouble(it->second));
- }
- PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_colorbar, args, kwargs);
- if(!res) throw std::runtime_error("Call to colorbar() failed.");
- Py_DECREF(args);
- Py_DECREF(kwargs);
- Py_DECREF(res);
- }
- inline long figure(long number = -1)
- {
- detail::_interpreter::get();
- PyObject *res;
- if (number == -1)
- res = PyObject_CallObject(detail::_interpreter::get().s_python_function_figure, detail::_interpreter::get().s_python_empty_tuple);
- else {
- assert(number > 0);
- // Make sure interpreter is initialised
- detail::_interpreter::get();
- PyObject *args = PyTuple_New(1);
- PyTuple_SetItem(args, 0, PyLong_FromLong(number));
- res = PyObject_CallObject(detail::_interpreter::get().s_python_function_figure, args);
- Py_DECREF(args);
- }
- if(!res) throw std::runtime_error("Call to figure() failed.");
- PyObject* num = PyObject_GetAttrString(res, "number");
- if (!num) throw std::runtime_error("Could not get number attribute of figure object");
- const long figureNumber = PyLong_AsLong(num);
- Py_DECREF(num);
- Py_DECREF(res);
- return figureNumber;
- }
- inline bool fignum_exists(long number)
- {
- detail::_interpreter::get();
- PyObject *args = PyTuple_New(1);
- PyTuple_SetItem(args, 0, PyLong_FromLong(number));
- PyObject *res = PyObject_CallObject(detail::_interpreter::get().s_python_function_fignum_exists, args);
- if(!res) throw std::runtime_error("Call to fignum_exists() failed.");
- bool ret = PyObject_IsTrue(res);
- Py_DECREF(res);
- Py_DECREF(args);
- return ret;
- }
- inline void figure_size(size_t w, size_t h)
- {
- detail::_interpreter::get();
- const size_t dpi = 100;
- PyObject* size = PyTuple_New(2);
- PyTuple_SetItem(size, 0, PyFloat_FromDouble((double)w / dpi));
- PyTuple_SetItem(size, 1, PyFloat_FromDouble((double)h / dpi));
- PyObject* kwargs = PyDict_New();
- PyDict_SetItemString(kwargs, "figsize", size);
- PyDict_SetItemString(kwargs, "dpi", PyLong_FromSize_t(dpi));
- PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_figure,
- detail::_interpreter::get().s_python_empty_tuple, kwargs);
- Py_DECREF(kwargs);
- if(!res) throw std::runtime_error("Call to figure_size() failed.");
- Py_DECREF(res);
- }
- inline void legend()
- {
- detail::_interpreter::get();
- PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_legend, detail::_interpreter::get().s_python_empty_tuple);
- if(!res) throw std::runtime_error("Call to legend() failed.");
- Py_DECREF(res);
- }
- inline void legend(const std::map<std::string, std::string>& keywords)
- {
- detail::_interpreter::get();
- // construct keyword args
- PyObject* kwargs = PyDict_New();
- for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it)
- {
- PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str()));
- }
- PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_legend, detail::_interpreter::get().s_python_empty_tuple, kwargs);
- if(!res) throw std::runtime_error("Call to legend() failed.");
- Py_DECREF(kwargs);
- Py_DECREF(res);
- }
- template<typename Numeric>
- inline void set_aspect(Numeric ratio)
- {
- detail::_interpreter::get();
- PyObject* args = PyTuple_New(1);
- PyTuple_SetItem(args, 0, PyFloat_FromDouble(ratio));
- PyObject* kwargs = PyDict_New();
- PyObject *ax =
- PyObject_CallObject(detail::_interpreter::get().s_python_function_gca,
- detail::_interpreter::get().s_python_empty_tuple);
- if (!ax) throw std::runtime_error("Call to gca() failed.");
- Py_INCREF(ax);
- PyObject *set_aspect = PyObject_GetAttrString(ax, "set_aspect");
- if (!set_aspect) throw std::runtime_error("Attribute set_aspect not found.");
- Py_INCREF(set_aspect);
- PyObject *res = PyObject_Call(set_aspect, args, kwargs);
- if (!res) throw std::runtime_error("Call to set_aspect() failed.");
- Py_DECREF(set_aspect);
- Py_DECREF(ax);
- Py_DECREF(args);
- Py_DECREF(kwargs);
- }
- inline void set_aspect_equal()
- {
- // expect ratio == "equal". Leaving error handling to matplotlib.
- detail::_interpreter::get();
- PyObject* args = PyTuple_New(1);
- PyTuple_SetItem(args, 0, PyString_FromString("equal"));
- PyObject* kwargs = PyDict_New();
- PyObject *ax =
- PyObject_CallObject(detail::_interpreter::get().s_python_function_gca,
- detail::_interpreter::get().s_python_empty_tuple);
- if (!ax) throw std::runtime_error("Call to gca() failed.");
- Py_INCREF(ax);
- PyObject *set_aspect = PyObject_GetAttrString(ax, "set_aspect");
- if (!set_aspect) throw std::runtime_error("Attribute set_aspect not found.");
- Py_INCREF(set_aspect);
- PyObject *res = PyObject_Call(set_aspect, args, kwargs);
- if (!res) throw std::runtime_error("Call to set_aspect() failed.");
- Py_DECREF(set_aspect);
- Py_DECREF(ax);
- Py_DECREF(args);
- Py_DECREF(kwargs);
- }
- template<typename Numeric>
- void ylim(Numeric left, Numeric right)
- {
- detail::_interpreter::get();
- PyObject* list = PyList_New(2);
- PyList_SetItem(list, 0, PyFloat_FromDouble(left));
- PyList_SetItem(list, 1, PyFloat_FromDouble(right));
- PyObject* args = PyTuple_New(1);
- PyTuple_SetItem(args, 0, list);
- PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_ylim, args);
- if(!res) throw std::runtime_error("Call to ylim() failed.");
- Py_DECREF(args);
- Py_DECREF(res);
- }
- template<typename Numeric>
- void xlim(Numeric left, Numeric right)
- {
- detail::_interpreter::get();
- PyObject* list = PyList_New(2);
- PyList_SetItem(list, 0, PyFloat_FromDouble(left));
- PyList_SetItem(list, 1, PyFloat_FromDouble(right));
- PyObject* args = PyTuple_New(1);
- PyTuple_SetItem(args, 0, list);
- PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_xlim, args);
- if(!res) throw std::runtime_error("Call to xlim() failed.");
- Py_DECREF(args);
- Py_DECREF(res);
- }
- inline std::array<double, 2> xlim()
- {
- PyObject* args = PyTuple_New(0);
- PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_xlim, args);
- if(!res) throw std::runtime_error("Call to xlim() failed.");
- Py_DECREF(res);
- PyObject* left = PyTuple_GetItem(res,0);
- PyObject* right = PyTuple_GetItem(res,1);
- return { PyFloat_AsDouble(left), PyFloat_AsDouble(right) };
- }
- inline std::array<double, 2> ylim()
- {
- PyObject* args = PyTuple_New(0);
- PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_ylim, args);
- if(!res) throw std::runtime_error("Call to ylim() failed.");
- Py_DECREF(res);
- PyObject* left = PyTuple_GetItem(res,0);
- PyObject* right = PyTuple_GetItem(res,1);
- return { PyFloat_AsDouble(left), PyFloat_AsDouble(right) };
- }
- template<typename Numeric>
- inline void xticks(const std::vector<Numeric> &ticks, const std::vector<std::string> &labels = {}, const std::map<std::string, std::string>& keywords = {})
- {
- assert(labels.size() == 0 || ticks.size() == labels.size());
- detail::_interpreter::get();
- // using numpy array
- PyObject* ticksarray = detail::get_array(ticks);
- PyObject* args;
- if(labels.size() == 0) {
- // construct positional args
- args = PyTuple_New(1);
- PyTuple_SetItem(args, 0, ticksarray);
- } else {
- // make tuple of tick labels
- PyObject* labelstuple = PyTuple_New(labels.size());
- for (size_t i = 0; i < labels.size(); i++)
- PyTuple_SetItem(labelstuple, i, PyUnicode_FromString(labels[i].c_str()));
- // construct positional args
- args = PyTuple_New(2);
- PyTuple_SetItem(args, 0, ticksarray);
- PyTuple_SetItem(args, 1, labelstuple);
- }
- // construct keyword args
- PyObject* kwargs = PyDict_New();
- for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it)
- {
- PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str()));
- }
- PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_xticks, args, kwargs);
- Py_DECREF(args);
- Py_DECREF(kwargs);
- if(!res) throw std::runtime_error("Call to xticks() failed");
- Py_DECREF(res);
- }
- template<typename Numeric>
- inline void xticks(const std::vector<Numeric> &ticks, const std::map<std::string, std::string>& keywords)
- {
- xticks(ticks, {}, keywords);
- }
- template<typename Numeric>
- inline void yticks(const std::vector<Numeric> &ticks, const std::vector<std::string> &labels = {}, const std::map<std::string, std::string>& keywords = {})
- {
- assert(labels.size() == 0 || ticks.size() == labels.size());
- detail::_interpreter::get();
- // using numpy array
- PyObject* ticksarray = detail::get_array(ticks);
- PyObject* args;
- if(labels.size() == 0) {
- // construct positional args
- args = PyTuple_New(1);
- PyTuple_SetItem(args, 0, ticksarray);
- } else {
- // make tuple of tick labels
- PyObject* labelstuple = PyTuple_New(labels.size());
- for (size_t i = 0; i < labels.size(); i++)
- PyTuple_SetItem(labelstuple, i, PyUnicode_FromString(labels[i].c_str()));
- // construct positional args
- args = PyTuple_New(2);
- PyTuple_SetItem(args, 0, ticksarray);
- PyTuple_SetItem(args, 1, labelstuple);
- }
- // construct keyword args
- PyObject* kwargs = PyDict_New();
- for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it)
- {
- PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str()));
- }
- PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_yticks, args, kwargs);
- Py_DECREF(args);
- Py_DECREF(kwargs);
- if(!res) throw std::runtime_error("Call to yticks() failed");
- Py_DECREF(res);
- }
- template<typename Numeric>
- inline void yticks(const std::vector<Numeric> &ticks, const std::map<std::string, std::string>& keywords)
- {
- yticks(ticks, {}, keywords);
- }
- template <typename Numeric> inline void margins(Numeric margin)
- {
- // construct positional args
- PyObject* args = PyTuple_New(1);
- PyTuple_SetItem(args, 0, PyFloat_FromDouble(margin));
- PyObject* res =
- PyObject_CallObject(detail::_interpreter::get().s_python_function_margins, args);
- if (!res)
- throw std::runtime_error("Call to margins() failed.");
- Py_DECREF(args);
- Py_DECREF(res);
- }
- template <typename Numeric> inline void margins(Numeric margin_x, Numeric margin_y)
- {
- // construct positional args
- PyObject* args = PyTuple_New(2);
- PyTuple_SetItem(args, 0, PyFloat_FromDouble(margin_x));
- PyTuple_SetItem(args, 1, PyFloat_FromDouble(margin_y));
- PyObject* res =
- PyObject_CallObject(detail::_interpreter::get().s_python_function_margins, args);
- if (!res)
- throw std::runtime_error("Call to margins() failed.");
- Py_DECREF(args);
- Py_DECREF(res);
- }
- inline void tick_params(const std::map<std::string, std::string>& keywords, const std::string axis = "both")
- {
- detail::_interpreter::get();
- // construct positional args
- PyObject* args;
- args = PyTuple_New(1);
- PyTuple_SetItem(args, 0, PyString_FromString(axis.c_str()));
- // construct keyword args
- PyObject* kwargs = PyDict_New();
- for (std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it)
- {
- PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str()));
- }
- PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_tick_params, args, kwargs);
- Py_DECREF(args);
- Py_DECREF(kwargs);
- if (!res) throw std::runtime_error("Call to tick_params() failed");
- Py_DECREF(res);
- }
- inline void subplot(long nrows, long ncols, long plot_number)
- {
- detail::_interpreter::get();
- // construct positional args
- PyObject* args = PyTuple_New(3);
- PyTuple_SetItem(args, 0, PyFloat_FromDouble(nrows));
- PyTuple_SetItem(args, 1, PyFloat_FromDouble(ncols));
- PyTuple_SetItem(args, 2, PyFloat_FromDouble(plot_number));
- PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_subplot, args);
- if(!res) throw std::runtime_error("Call to subplot() failed.");
- Py_DECREF(args);
- Py_DECREF(res);
- }
- inline void subplot2grid(long nrows, long ncols, long rowid=0, long colid=0, long rowspan=1, long colspan=1)
- {
- detail::_interpreter::get();
- PyObject* shape = PyTuple_New(2);
- PyTuple_SetItem(shape, 0, PyLong_FromLong(nrows));
- PyTuple_SetItem(shape, 1, PyLong_FromLong(ncols));
- PyObject* loc = PyTuple_New(2);
- PyTuple_SetItem(loc, 0, PyLong_FromLong(rowid));
- PyTuple_SetItem(loc, 1, PyLong_FromLong(colid));
- PyObject* args = PyTuple_New(4);
- PyTuple_SetItem(args, 0, shape);
- PyTuple_SetItem(args, 1, loc);
- PyTuple_SetItem(args, 2, PyLong_FromLong(rowspan));
- PyTuple_SetItem(args, 3, PyLong_FromLong(colspan));
- PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_subplot2grid, args);
- if(!res) throw std::runtime_error("Call to subplot2grid() failed.");
- Py_DECREF(shape);
- Py_DECREF(loc);
- Py_DECREF(args);
- Py_DECREF(res);
- }
- inline void title(const std::string &titlestr, const std::map<std::string, std::string> &keywords = {})
- {
- detail::_interpreter::get();
- PyObject* pytitlestr = PyString_FromString(titlestr.c_str());
- PyObject* args = PyTuple_New(1);
- PyTuple_SetItem(args, 0, pytitlestr);
- PyObject* kwargs = PyDict_New();
- for (auto it = keywords.begin(); it != keywords.end(); ++it) {
- PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str()));
- }
- PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_title, args, kwargs);
- if(!res) throw std::runtime_error("Call to title() failed.");
- Py_DECREF(args);
- Py_DECREF(kwargs);
- Py_DECREF(res);
- }
- inline void suptitle(const std::string &suptitlestr, const std::map<std::string, std::string> &keywords = {})
- {
- detail::_interpreter::get();
- PyObject* pysuptitlestr = PyString_FromString(suptitlestr.c_str());
- PyObject* args = PyTuple_New(1);
- PyTuple_SetItem(args, 0, pysuptitlestr);
- PyObject* kwargs = PyDict_New();
- for (auto it = keywords.begin(); it != keywords.end(); ++it) {
- PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str()));
- }
- PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_suptitle, args, kwargs);
- if(!res) throw std::runtime_error("Call to suptitle() failed.");
- Py_DECREF(args);
- Py_DECREF(kwargs);
- Py_DECREF(res);
- }
- inline void axis(const std::string &axisstr)
- {
- detail::_interpreter::get();
- PyObject* str = PyString_FromString(axisstr.c_str());
- PyObject* args = PyTuple_New(1);
- PyTuple_SetItem(args, 0, str);
- PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_axis, args);
- if(!res) throw std::runtime_error("Call to title() failed.");
- Py_DECREF(args);
- Py_DECREF(res);
- }
- inline void axhline(double y, double xmin = 0., double xmax = 1., const std::map<std::string, std::string>& keywords = std::map<std::string, std::string>())
- {
- detail::_interpreter::get();
- // construct positional args
- PyObject* args = PyTuple_New(3);
- PyTuple_SetItem(args, 0, PyFloat_FromDouble(y));
- PyTuple_SetItem(args, 1, PyFloat_FromDouble(xmin));
- PyTuple_SetItem(args, 2, PyFloat_FromDouble(xmax));
- // construct keyword args
- PyObject* kwargs = PyDict_New();
- for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it)
- {
- PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str()));
- }
- PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_axhline, args, kwargs);
- Py_DECREF(args);
- Py_DECREF(kwargs);
- if(res) Py_DECREF(res);
- }
- inline void axvline(double x, double ymin = 0., double ymax = 1., const std::map<std::string, std::string>& keywords = std::map<std::string, std::string>())
- {
- detail::_interpreter::get();
- // construct positional args
- PyObject* args = PyTuple_New(3);
- PyTuple_SetItem(args, 0, PyFloat_FromDouble(x));
- PyTuple_SetItem(args, 1, PyFloat_FromDouble(ymin));
- PyTuple_SetItem(args, 2, PyFloat_FromDouble(ymax));
- // construct keyword args
- PyObject* kwargs = PyDict_New();
- for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it)
- {
- PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str()));
- }
- PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_axvline, args, kwargs);
- Py_DECREF(args);
- Py_DECREF(kwargs);
- if(res) Py_DECREF(res);
- }
- inline void axvspan(double xmin, double xmax, double ymin = 0., double ymax = 1., const std::map<std::string, std::string>& keywords = std::map<std::string, std::string>())
- {
- // construct positional args
- PyObject* args = PyTuple_New(4);
- PyTuple_SetItem(args, 0, PyFloat_FromDouble(xmin));
- PyTuple_SetItem(args, 1, PyFloat_FromDouble(xmax));
- PyTuple_SetItem(args, 2, PyFloat_FromDouble(ymin));
- PyTuple_SetItem(args, 3, PyFloat_FromDouble(ymax));
- // construct keyword args
- PyObject* kwargs = PyDict_New();
- for (auto it = keywords.begin(); it != keywords.end(); ++it) {
- if (it->first == "linewidth" || it->first == "alpha") {
- PyDict_SetItemString(kwargs, it->first.c_str(),
- PyFloat_FromDouble(std::stod(it->second)));
- } else {
- PyDict_SetItemString(kwargs, it->first.c_str(),
- PyString_FromString(it->second.c_str()));
- }
- }
- PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_axvspan, args, kwargs);
- Py_DECREF(args);
- Py_DECREF(kwargs);
- if(res) Py_DECREF(res);
- }
- inline void xlabel(const std::string &str, const std::map<std::string, std::string> &keywords = {})
- {
- detail::_interpreter::get();
- PyObject* pystr = PyString_FromString(str.c_str());
- PyObject* args = PyTuple_New(1);
- PyTuple_SetItem(args, 0, pystr);
- PyObject* kwargs = PyDict_New();
- for (auto it = keywords.begin(); it != keywords.end(); ++it) {
- PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str()));
- }
- PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_xlabel, args, kwargs);
- if(!res) throw std::runtime_error("Call to xlabel() failed.");
- Py_DECREF(args);
- Py_DECREF(kwargs);
- Py_DECREF(res);
- }
- inline void ylabel(const std::string &str, const std::map<std::string, std::string>& keywords = {})
- {
- detail::_interpreter::get();
- PyObject* pystr = PyString_FromString(str.c_str());
- PyObject* args = PyTuple_New(1);
- PyTuple_SetItem(args, 0, pystr);
- PyObject* kwargs = PyDict_New();
- for (auto it = keywords.begin(); it != keywords.end(); ++it) {
- PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str()));
- }
- PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_ylabel, args, kwargs);
- if(!res) throw std::runtime_error("Call to ylabel() failed.");
- Py_DECREF(args);
- Py_DECREF(kwargs);
- Py_DECREF(res);
- }
- inline void set_zlabel(const std::string &str, const std::map<std::string, std::string>& keywords = {})
- {
- detail::_interpreter::get();
- // Same as with plot_surface: We lazily load the modules here the first time
- // this function is called because I'm not sure that we can assume "matplotlib
- // installed" implies "mpl_toolkits installed" on all platforms, and we don't
- // want to require it for people who don't need 3d plots.
- static PyObject *mpl_toolkitsmod = nullptr, *axis3dmod = nullptr;
- if (!mpl_toolkitsmod) {
- PyObject* mpl_toolkits = PyString_FromString("mpl_toolkits");
- PyObject* axis3d = PyString_FromString("mpl_toolkits.mplot3d");
- if (!mpl_toolkits || !axis3d) { throw std::runtime_error("couldnt create string"); }
- mpl_toolkitsmod = PyImport_Import(mpl_toolkits);
- Py_DECREF(mpl_toolkits);
- if (!mpl_toolkitsmod) { throw std::runtime_error("Error loading module mpl_toolkits!"); }
- axis3dmod = PyImport_Import(axis3d);
- Py_DECREF(axis3d);
- if (!axis3dmod) { throw std::runtime_error("Error loading module mpl_toolkits.mplot3d!"); }
- }
- PyObject* pystr = PyString_FromString(str.c_str());
- PyObject* args = PyTuple_New(1);
- PyTuple_SetItem(args, 0, pystr);
- PyObject* kwargs = PyDict_New();
- for (auto it = keywords.begin(); it != keywords.end(); ++it) {
- PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str()));
- }
- PyObject *ax =
- PyObject_CallObject(detail::_interpreter::get().s_python_function_gca,
- detail::_interpreter::get().s_python_empty_tuple);
- if (!ax) throw std::runtime_error("Call to gca() failed.");
- Py_INCREF(ax);
- PyObject *zlabel = PyObject_GetAttrString(ax, "set_zlabel");
- if (!zlabel) throw std::runtime_error("Attribute set_zlabel not found.");
- Py_INCREF(zlabel);
- PyObject *res = PyObject_Call(zlabel, args, kwargs);
- if (!res) throw std::runtime_error("Call to set_zlabel() failed.");
- Py_DECREF(zlabel);
- Py_DECREF(ax);
- Py_DECREF(args);
- Py_DECREF(kwargs);
- if (res) Py_DECREF(res);
- }
- inline void grid(bool flag)
- {
- detail::_interpreter::get();
- PyObject* pyflag = flag ? Py_True : Py_False;
- Py_INCREF(pyflag);
- PyObject* args = PyTuple_New(1);
- PyTuple_SetItem(args, 0, pyflag);
- PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_grid, args);
- if(!res) throw std::runtime_error("Call to grid() failed.");
- Py_DECREF(args);
- Py_DECREF(res);
- }
- inline void show(const bool block = true)
- {
- detail::_interpreter::get();
- PyObject* res;
- if(block)
- {
- res = PyObject_CallObject(
- detail::_interpreter::get().s_python_function_show,
- detail::_interpreter::get().s_python_empty_tuple);
- }
- else
- {
- PyObject *kwargs = PyDict_New();
- PyDict_SetItemString(kwargs, "block", Py_False);
- res = PyObject_Call( detail::_interpreter::get().s_python_function_show, detail::_interpreter::get().s_python_empty_tuple, kwargs);
- Py_DECREF(kwargs);
- }
- if (!res) throw std::runtime_error("Call to show() failed.");
- Py_DECREF(res);
- }
- inline void close()
- {
- detail::_interpreter::get();
- PyObject* res = PyObject_CallObject(
- detail::_interpreter::get().s_python_function_close,
- detail::_interpreter::get().s_python_empty_tuple);
- if (!res) throw std::runtime_error("Call to close() failed.");
- Py_DECREF(res);
- }
- inline void xkcd() {
- detail::_interpreter::get();
- PyObject* res;
- PyObject *kwargs = PyDict_New();
- res = PyObject_Call(detail::_interpreter::get().s_python_function_xkcd,
- detail::_interpreter::get().s_python_empty_tuple, kwargs);
- Py_DECREF(kwargs);
- if (!res)
- throw std::runtime_error("Call to show() failed.");
- Py_DECREF(res);
- }
- inline void draw()
- {
- detail::_interpreter::get();
- PyObject* res = PyObject_CallObject(
- detail::_interpreter::get().s_python_function_draw,
- detail::_interpreter::get().s_python_empty_tuple);
- if (!res) throw std::runtime_error("Call to draw() failed.");
- Py_DECREF(res);
- }
- template<typename Numeric>
- inline void pause(Numeric interval)
- {
- detail::_interpreter::get();
- PyObject* args = PyTuple_New(1);
- PyTuple_SetItem(args, 0, PyFloat_FromDouble(interval));
- PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_pause, args);
- if(!res) throw std::runtime_error("Call to pause() failed.");
- Py_DECREF(args);
- Py_DECREF(res);
- }
- inline void save(const std::string& filename, const int dpi=0)
- {
- detail::_interpreter::get();
- PyObject* pyfilename = PyString_FromString(filename.c_str());
- PyObject* args = PyTuple_New(1);
- PyTuple_SetItem(args, 0, pyfilename);
- PyObject* kwargs = PyDict_New();
- if(dpi > 0)
- {
- PyDict_SetItemString(kwargs, "dpi", PyLong_FromLong(dpi));
- }
- PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_save, args, kwargs);
- if (!res) throw std::runtime_error("Call to save() failed.");
- Py_DECREF(args);
- Py_DECREF(kwargs);
- Py_DECREF(res);
- }
- inline void rcparams(const std::map<std::string, std::string>& keywords = {}) {
- detail::_interpreter::get();
- PyObject* args = PyTuple_New(0);
- PyObject* kwargs = PyDict_New();
- for (auto it = keywords.begin(); it != keywords.end(); ++it) {
- if ("text.usetex" == it->first)
- PyDict_SetItemString(kwargs, it->first.c_str(), PyLong_FromLong(std::stoi(it->second.c_str())));
- else PyDict_SetItemString(kwargs, it->first.c_str(), PyString_FromString(it->second.c_str()));
- }
-
- PyObject * update = PyObject_GetAttrString(detail::_interpreter::get().s_python_function_rcparams, "update");
- PyObject * res = PyObject_Call(update, args, kwargs);
- if(!res) throw std::runtime_error("Call to rcParams.update() failed.");
- Py_DECREF(args);
- Py_DECREF(kwargs);
- Py_DECREF(update);
- Py_DECREF(res);
- }
- inline void clf() {
- detail::_interpreter::get();
- PyObject *res = PyObject_CallObject(
- detail::_interpreter::get().s_python_function_clf,
- detail::_interpreter::get().s_python_empty_tuple);
- if (!res) throw std::runtime_error("Call to clf() failed.");
- Py_DECREF(res);
- }
- inline void cla() {
- detail::_interpreter::get();
- PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_cla,
- detail::_interpreter::get().s_python_empty_tuple);
- if (!res)
- throw std::runtime_error("Call to cla() failed.");
- Py_DECREF(res);
- }
- inline void ion() {
- detail::_interpreter::get();
- PyObject *res = PyObject_CallObject(
- detail::_interpreter::get().s_python_function_ion,
- detail::_interpreter::get().s_python_empty_tuple);
- if (!res) throw std::runtime_error("Call to ion() failed.");
- Py_DECREF(res);
- }
- inline std::vector<std::array<double, 2>> ginput(const int numClicks = 1, const std::map<std::string, std::string>& keywords = {})
- {
- detail::_interpreter::get();
- PyObject *args = PyTuple_New(1);
- PyTuple_SetItem(args, 0, PyLong_FromLong(numClicks));
- // construct keyword args
- PyObject* kwargs = PyDict_New();
- for(std::map<std::string, std::string>::const_iterator it = keywords.begin(); it != keywords.end(); ++it)
- {
- PyDict_SetItemString(kwargs, it->first.c_str(), PyUnicode_FromString(it->second.c_str()));
- }
- PyObject* res = PyObject_Call(
- detail::_interpreter::get().s_python_function_ginput, args, kwargs);
- Py_DECREF(kwargs);
- Py_DECREF(args);
- if (!res) throw std::runtime_error("Call to ginput() failed.");
- const size_t len = PyList_Size(res);
- std::vector<std::array<double, 2>> out;
- out.reserve(len);
- for (size_t i = 0; i < len; i++) {
- PyObject *current = PyList_GetItem(res, i);
- std::array<double, 2> position;
- position[0] = PyFloat_AsDouble(PyTuple_GetItem(current, 0));
- position[1] = PyFloat_AsDouble(PyTuple_GetItem(current, 1));
- out.push_back(position);
- }
- Py_DECREF(res);
- return out;
- }
- // Actually, is there any reason not to call this automatically for every plot?
- inline void tight_layout() {
- detail::_interpreter::get();
- PyObject *res = PyObject_CallObject(
- detail::_interpreter::get().s_python_function_tight_layout,
- detail::_interpreter::get().s_python_empty_tuple);
- if (!res) throw std::runtime_error("Call to tight_layout() failed.");
- Py_DECREF(res);
- }
- // Support for variadic plot() and initializer lists:
- namespace detail {
- template<typename T>
- using is_function = typename std::is_function<std::remove_pointer<std::remove_reference<T>>>::type;
- template<bool obj, typename T>
- struct is_callable_impl;
- template<typename T>
- struct is_callable_impl<false, T>
- {
- typedef is_function<T> type;
- }; // a non-object is callable iff it is a function
- template<typename T>
- struct is_callable_impl<true, T>
- {
- struct Fallback { void operator()(); };
- struct Derived : T, Fallback { };
- template<typename U, U> struct Check;
- template<typename U>
- static std::true_type test( ... ); // use a variadic function to make sure (1) it accepts everything and (2) its always the worst match
- template<typename U>
- static std::false_type test( Check<void(Fallback::*)(), &U::operator()>* );
- public:
- typedef decltype(test<Derived>(nullptr)) type;
- typedef decltype(&Fallback::operator()) dtype;
- static constexpr bool value = type::value;
- }; // an object is callable iff it defines operator()
- template<typename T>
- struct is_callable
- {
- // dispatch to is_callable_impl<true, T> or is_callable_impl<false, T> depending on whether T is of class type or not
- typedef typename is_callable_impl<std::is_class<T>::value, T>::type type;
- };
- template<typename IsYDataCallable>
- struct plot_impl { };
- template<>
- struct plot_impl<std::false_type>
- {
- template<typename IterableX, typename IterableY>
- bool operator()(const IterableX& x, const IterableY& y, const std::string& format)
- {
- detail::_interpreter::get();
- // 2-phase lookup for distance, begin, end
- using std::distance;
- using std::begin;
- using std::end;
- auto xs = distance(begin(x), end(x));
- auto ys = distance(begin(y), end(y));
- assert(xs == ys && "x and y data must have the same number of elements!");
- PyObject* xlist = PyList_New(xs);
- PyObject* ylist = PyList_New(ys);
- PyObject* pystring = PyString_FromString(format.c_str());
- auto itx = begin(x), ity = begin(y);
- for(size_t i = 0; i < xs; ++i) {
- PyList_SetItem(xlist, i, PyFloat_FromDouble(*itx++));
- PyList_SetItem(ylist, i, PyFloat_FromDouble(*ity++));
- }
- PyObject* plot_args = PyTuple_New(3);
- PyTuple_SetItem(plot_args, 0, xlist);
- PyTuple_SetItem(plot_args, 1, ylist);
- PyTuple_SetItem(plot_args, 2, pystring);
- PyObject* res = PyObject_CallObject(detail::_interpreter::get().s_python_function_plot, plot_args);
- Py_DECREF(plot_args);
- if(res) Py_DECREF(res);
- return res;
- }
- };
- template<>
- struct plot_impl<std::true_type>
- {
- template<typename Iterable, typename Callable>
- bool operator()(const Iterable& ticks, const Callable& f, const std::string& format)
- {
- if(begin(ticks) == end(ticks)) return true;
- // We could use additional meta-programming to deduce the correct element type of y,
- // but all values have to be convertible to double anyways
- std::vector<double> y;
- for(auto x : ticks) y.push_back(f(x));
- return plot_impl<std::false_type>()(ticks,y,format);
- }
- };
- } // end namespace detail
- // recursion stop for the above
- template<typename... Args>
- bool plot() { return true; }
- template<typename A, typename B, typename... Args>
- bool plot(const A& a, const B& b, const std::string& format, Args... args)
- {
- return detail::plot_impl<typename detail::is_callable<B>::type>()(a,b,format) && plot(args...);
- }
- /*
- * This group of plot() functions is needed to support initializer lists, i.e. calling
- * plot( {1,2,3,4} )
- */
- inline bool plot(const std::vector<double>& x, const std::vector<double>& y, const std::string& format = "") {
- return plot<double,double>(x,y,format);
- }
- inline bool plot(const std::vector<double>& y, const std::string& format = "") {
- return plot<double>(y,format);
- }
- inline bool plot(const std::vector<double>& x, const std::vector<double>& y, const std::map<std::string, std::string>& keywords) {
- return plot<double>(x,y,keywords);
- }
- /*
- * This class allows dynamic plots, ie changing the plotted data without clearing and re-plotting
- */
- class Plot
- {
- public:
- // default initialization with plot label, some data and format
- template<typename Numeric>
- Plot(const std::string& name, const std::vector<Numeric>& x, const std::vector<Numeric>& y, const std::string& format = "") {
- detail::_interpreter::get();
- assert(x.size() == y.size());
- PyObject* kwargs = PyDict_New();
- if(name != "")
- PyDict_SetItemString(kwargs, "label", PyString_FromString(name.c_str()));
- PyObject* xarray = detail::get_array(x);
- PyObject* yarray = detail::get_array(y);
- PyObject* pystring = PyString_FromString(format.c_str());
- PyObject* plot_args = PyTuple_New(3);
- PyTuple_SetItem(plot_args, 0, xarray);
- PyTuple_SetItem(plot_args, 1, yarray);
- PyTuple_SetItem(plot_args, 2, pystring);
- PyObject* res = PyObject_Call(detail::_interpreter::get().s_python_function_plot, plot_args, kwargs);
- Py_DECREF(kwargs);
- Py_DECREF(plot_args);
- if(res)
- {
- line= PyList_GetItem(res, 0);
- if(line)
- set_data_fct = PyObject_GetAttrString(line,"set_data");
- else
- Py_DECREF(line);
- Py_DECREF(res);
- }
- }
- // shorter initialization with name or format only
- // basically calls line, = plot([], [])
- Plot(const std::string& name = "", const std::string& format = "")
- : Plot(name, std::vector<double>(), std::vector<double>(), format) {}
- template<typename Numeric>
- bool update(const std::vector<Numeric>& x, const std::vector<Numeric>& y) {
- assert(x.size() == y.size());
- if(set_data_fct)
- {
- PyObject* xarray = detail::get_array(x);
- PyObject* yarray = detail::get_array(y);
- PyObject* plot_args = PyTuple_New(2);
- PyTuple_SetItem(plot_args, 0, xarray);
- PyTuple_SetItem(plot_args, 1, yarray);
- PyObject* res = PyObject_CallObject(set_data_fct, plot_args);
- if (res) Py_DECREF(res);
- return res;
- }
- return false;
- }
- // clears the plot but keep it available
- bool clear() {
- return update(std::vector<double>(), std::vector<double>());
- }
- // definitely remove this line
- void remove() {
- if(line)
- {
- auto remove_fct = PyObject_GetAttrString(line,"remove");
- PyObject* args = PyTuple_New(0);
- PyObject* res = PyObject_CallObject(remove_fct, args);
- if (res) Py_DECREF(res);
- }
- decref();
- }
- ~Plot() {
- decref();
- }
- private:
- void decref() {
- if(line)
- Py_DECREF(line);
- if(set_data_fct)
- Py_DECREF(set_data_fct);
- }
- PyObject* line = nullptr;
- PyObject* set_data_fct = nullptr;
- };
- } // end namespace matplotlibcpp
|