mirror of
https://github.com/JoeyDeVries/LearnOpenGL.git
synced 2026-01-30 20:13:22 +08:00
Template PBR lighting tut with folder re-structure to fit PBR tuts.
This commit is contained in:
@@ -58,7 +58,8 @@ set(CHAPTERS
|
||||
3.model_loading
|
||||
4.advanced_opengl
|
||||
5.advanced_lighting
|
||||
6.in_practice
|
||||
6.pbr
|
||||
7.in_practice
|
||||
)
|
||||
|
||||
set(1.getting_started
|
||||
@@ -111,7 +112,14 @@ set(5.advanced_lighting
|
||||
9.ssao
|
||||
)
|
||||
|
||||
set(6.in_practice
|
||||
set(6.pbr
|
||||
1.1.lighting
|
||||
1.2.lighting_textured
|
||||
# 2.1.ibl_irradiance
|
||||
# 2.2.ibl_specular
|
||||
)
|
||||
|
||||
set(7.in_practice
|
||||
1.debugging
|
||||
# 2.text_rendering
|
||||
)
|
||||
|
||||
11
src/5.advanced_lighting/8.deferred_shading/fbo_debug.frag
Normal file
11
src/5.advanced_lighting/8.deferred_shading/fbo_debug.frag
Normal file
@@ -0,0 +1,11 @@
|
||||
// fragment shader
|
||||
#version 330 core
|
||||
out vec4 FragColor;
|
||||
in vec2 TexCoords;
|
||||
|
||||
uniform sampler2D fboAttachment;
|
||||
|
||||
void main()
|
||||
{
|
||||
FragColor = texture(fboAttachment, TexCoords);
|
||||
}
|
||||
13
src/5.advanced_lighting/8.deferred_shading/fbo_debug.vs
Normal file
13
src/5.advanced_lighting/8.deferred_shading/fbo_debug.vs
Normal file
@@ -0,0 +1,13 @@
|
||||
// vertex shader
|
||||
#version 330 core
|
||||
layout (location = 0) in vec2 position;
|
||||
layout (location = 1) in vec2 texCoords;
|
||||
|
||||
out vec2 TexCoords;
|
||||
|
||||
void main()
|
||||
{
|
||||
gl_Position = vec4(position, 0.0f, 1.0f);
|
||||
TexCoords = texCoords;
|
||||
}
|
||||
|
||||
473
src/6.pbr/1.1.lighting/lighting.cpp
Normal file
473
src/6.pbr/1.1.lighting/lighting.cpp
Normal file
@@ -0,0 +1,473 @@
|
||||
// Std. Includes
|
||||
#include <string>
|
||||
|
||||
// GLEW
|
||||
#define GLEW_STATIC
|
||||
#include <GL/glew.h>
|
||||
|
||||
// GLFW
|
||||
#include <GLFW/glfw3.h>
|
||||
|
||||
// GL includes
|
||||
#include <learnopengl/shader.h>
|
||||
#include <learnopengl/camera.h>
|
||||
#include <learnopengl/model.h>
|
||||
|
||||
// GLM Mathemtics
|
||||
#include <glm/glm.hpp>
|
||||
#include <glm/gtc/matrix_transform.hpp>
|
||||
#include <glm/gtc/type_ptr.hpp>
|
||||
|
||||
// Other Libs
|
||||
#include <SOIL.h>
|
||||
#include <learnopengl/filesystem.h>
|
||||
|
||||
// Properties
|
||||
const GLuint SCR_WIDTH = 1280, SCR_HEIGHT = 720;
|
||||
|
||||
// Function prototypes
|
||||
void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode);
|
||||
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);
|
||||
void mouse_callback(GLFWwindow* window, double xpos, double ypos);
|
||||
void Do_Movement();
|
||||
GLuint loadTexture(GLchar const * path);
|
||||
void RenderQuad();
|
||||
void renderSphere();
|
||||
|
||||
|
||||
// camera
|
||||
Camera camera(glm::vec3(0.0f, 0.0f, 3.0f));
|
||||
|
||||
// timing
|
||||
GLfloat deltaTime = 0.0f;
|
||||
GLfloat lastFrame = 0.0f;
|
||||
|
||||
|
||||
// The MAIN function, from here we start our application and run our Game loop
|
||||
int main()
|
||||
{
|
||||
// Init GLFW
|
||||
glfwInit();
|
||||
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
|
||||
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
|
||||
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
|
||||
glfwWindowHint(GLFW_SAMPLES, 32);
|
||||
glfwWindowHint(GLFW_RESIZABLE, GL_FALSE);
|
||||
|
||||
GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", nullptr, nullptr); // Windowed
|
||||
glfwMakeContextCurrent(window);
|
||||
|
||||
// Set the required callback functions
|
||||
glfwSetKeyCallback(window, key_callback);
|
||||
glfwSetCursorPosCallback(window, mouse_callback);
|
||||
glfwSetScrollCallback(window, scroll_callback);
|
||||
|
||||
// Options
|
||||
glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);
|
||||
|
||||
// Initialize GLEW to setup the OpenGL Function pointers
|
||||
glewExperimental = GL_TRUE;
|
||||
glewInit();
|
||||
|
||||
// Define the viewport dimensions
|
||||
glViewport(0, 0, SCR_WIDTH, SCR_HEIGHT);
|
||||
|
||||
// Setup some OpenGL options
|
||||
glEnable(GL_DEPTH_TEST);
|
||||
|
||||
// Setup and compile our shaders
|
||||
Shader shader("pbr.vs", "pbr.frag");
|
||||
|
||||
// set (constant) material properties
|
||||
shader.Use();
|
||||
glUniform3f(glGetUniformLocation(shader.Program, "albedo"), 0.5f, 0.0f, 0.0f);
|
||||
glUniform1f(glGetUniformLocation(shader.Program, "ao"), 1.0f);
|
||||
|
||||
// projection setup
|
||||
glm::mat4 projection = glm::perspective(camera.Zoom, (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f);
|
||||
glUniformMatrix4fv(glGetUniformLocation(shader.Program, "projection"), 1, GL_FALSE, glm::value_ptr(projection));
|
||||
|
||||
// lights
|
||||
glm::vec3 lightPositions[] = {
|
||||
glm::vec3(-10.0f, 10.0f, 10.0f),
|
||||
glm::vec3( 10.0f, 10.0f, 10.0f),
|
||||
glm::vec3(-10.0f, -10.0f, 10.0f),
|
||||
glm::vec3( 10.0f, -10.0f, 10.0f),
|
||||
};
|
||||
glm::vec3 lightColors[] = {
|
||||
glm::vec3(5.0f, 5.0f, 5.0f),
|
||||
glm::vec3(5.0f, 5.0f, 5.0f),
|
||||
glm::vec3(5.0f, 5.0f, 5.0f),
|
||||
glm::vec3(5.0f, 5.0f, 5.0f)
|
||||
};
|
||||
int nrRows = 7;
|
||||
int nrColumns = 7;
|
||||
float spacing = 2.5;
|
||||
|
||||
|
||||
// Game loop
|
||||
while (!glfwWindowShouldClose(window))
|
||||
{
|
||||
// set frame time
|
||||
GLfloat currentFrame = glfwGetTime();
|
||||
deltaTime = currentFrame - lastFrame;
|
||||
lastFrame = currentFrame;
|
||||
|
||||
// check and call events
|
||||
glfwPollEvents();
|
||||
Do_Movement();
|
||||
|
||||
// clear the colorbuffer
|
||||
glClearColor(0.1f, 0.1f, 0.1f, 1.0f);
|
||||
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
|
||||
|
||||
// configure view matrix
|
||||
shader.Use();
|
||||
glm::mat4 view = camera.GetViewMatrix();
|
||||
glUniformMatrix4fv(glGetUniformLocation(shader.Program, "view"), 1, GL_FALSE, glm::value_ptr(view));
|
||||
|
||||
// setup relevant shader uniforms
|
||||
glUniform3fv(glGetUniformLocation(shader.Program, "camPos"), 1, &camera.Position[0]);
|
||||
glUniform1f(glGetUniformLocation(shader.Program, "exposure"), 1.0f);
|
||||
|
||||
// render rows*column number of spheres with varying metallic/roughness values scaled by rows and columns respectively
|
||||
glm::mat4 model;
|
||||
for (int row = 0; row < nrRows; ++row)
|
||||
{
|
||||
glUniform1f(glGetUniformLocation(shader.Program, "metallic"), (float)row / (float)nrRows);
|
||||
for (int col = 0; col < nrColumns; ++col)
|
||||
{
|
||||
// we clamp the roughness to 0.025 - 1.0 as perfectly smooth surfaces (roughness of 0.0) tend to look a bit off
|
||||
// on direct lighting.
|
||||
glUniform1f(glGetUniformLocation(shader.Program, "roughness"), glm::clamp((float)col / (float)nrColumns, 0.05f, 1.0f));
|
||||
|
||||
model = glm::mat4();
|
||||
model = glm::translate(model, glm::vec3(
|
||||
(float)(col - (nrColumns / 2)) * spacing,
|
||||
(float)(row - (nrRows / 2)) * spacing,
|
||||
0.0f
|
||||
));
|
||||
glUniformMatrix4fv(glGetUniformLocation(shader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
|
||||
renderSphere();
|
||||
}
|
||||
}
|
||||
|
||||
// render light source (simply re-render sphere at light positions)
|
||||
// this looks a bit off as we use the same shader, but it'll make their positions obvious and
|
||||
// keeps the codeprint small.
|
||||
|
||||
for (unsigned int i = 0; i < sizeof(lightPositions) / sizeof(lightPositions[0]); ++i)
|
||||
//for (unsigned int i = 0; i < 1; ++i)
|
||||
{
|
||||
glUniform3fv(glGetUniformLocation(shader.Program, ("lightPositions[" + std::to_string(i) + "]").c_str()), 1, &lightPositions[i][0]);
|
||||
glUniform3fv(glGetUniformLocation(shader.Program, ("lightColors[" + std::to_string(i) + "]").c_str()), 1, &lightColors[i][0]);
|
||||
|
||||
model = glm::mat4();
|
||||
model = glm::translate(model, lightPositions[i]);
|
||||
model = glm::scale(model, glm::vec3(0.5f));
|
||||
glUniformMatrix4fv(glGetUniformLocation(shader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
|
||||
renderSphere();
|
||||
}
|
||||
|
||||
// Swap the buffers
|
||||
glfwSwapBuffers(window);
|
||||
}
|
||||
|
||||
glfwTerminate();
|
||||
return 0;
|
||||
}
|
||||
|
||||
unsigned int sphereVAO = 0;
|
||||
unsigned int indexCount;
|
||||
void renderSphere()
|
||||
{
|
||||
if (sphereVAO == 0)
|
||||
{
|
||||
glGenVertexArrays(1, &sphereVAO);
|
||||
|
||||
unsigned int vbo, ebo;
|
||||
glGenBuffers(1, &vbo);
|
||||
glGenBuffers(1, &ebo);
|
||||
|
||||
std::vector<glm::vec3> positions;
|
||||
std::vector<glm::vec2> uv;
|
||||
std::vector<glm::vec3> normals;
|
||||
std::vector<glm::vec3> tangents;
|
||||
std::vector<glm::vec3> bitangents;
|
||||
std::vector<unsigned int> indices;
|
||||
|
||||
const unsigned int X_SEGMENTS = 64;
|
||||
const unsigned int Y_SEGMENTS = 64;
|
||||
const float PI = 3.14159265359;
|
||||
for (unsigned int y = 0; y <= Y_SEGMENTS; ++y)
|
||||
{
|
||||
for (unsigned int x = 0; x <= X_SEGMENTS; ++x)
|
||||
{
|
||||
float xSegment = (float)x / (float)X_SEGMENTS;
|
||||
float ySegment = (float)y / (float)Y_SEGMENTS;
|
||||
float xPos = std::cos(xSegment * 2.0f * PI) * std::sin(ySegment * PI); // NOTE(Joey): TAU is 2PI
|
||||
float yPos = std::cos(ySegment * PI);
|
||||
float zPos = std::sin(xSegment * 2.0f * PI) * std::sin(ySegment * PI);
|
||||
|
||||
positions.push_back(glm::vec3(xPos, yPos, zPos));
|
||||
uv.push_back(glm::vec2(xSegment, ySegment));
|
||||
normals.push_back(glm::vec3(xPos, yPos, zPos));
|
||||
}
|
||||
}
|
||||
|
||||
bool oddRow = false;
|
||||
for (int y = 0; y < Y_SEGMENTS; ++y)
|
||||
{
|
||||
if (!oddRow) // NOTE(Joey): even rows: y == 0, y == 2; and so on
|
||||
{
|
||||
for (int x = 0; x <= X_SEGMENTS; ++x)
|
||||
{
|
||||
indices.push_back(y * (X_SEGMENTS + 1) + x);
|
||||
indices.push_back((y + 1) * (X_SEGMENTS + 1) + x);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (int x = X_SEGMENTS; x >= 0; --x)
|
||||
{
|
||||
indices.push_back((y + 1) * (X_SEGMENTS + 1) + x);
|
||||
indices.push_back(y * (X_SEGMENTS + 1) + x);
|
||||
}
|
||||
}
|
||||
oddRow = !oddRow;
|
||||
}
|
||||
indexCount = indices.size();
|
||||
std::vector<float> data;
|
||||
for (int i = 0; i < positions.size(); ++i)
|
||||
{
|
||||
data.push_back(positions[i].x);
|
||||
data.push_back(positions[i].y);
|
||||
data.push_back(positions[i].z);
|
||||
if (uv.size() > 0)
|
||||
{
|
||||
data.push_back(uv[i].x);
|
||||
data.push_back(uv[i].y);
|
||||
}
|
||||
if (normals.size() > 0)
|
||||
{
|
||||
data.push_back(normals[i].x);
|
||||
data.push_back(normals[i].y);
|
||||
data.push_back(normals[i].z);
|
||||
}
|
||||
if (tangents.size() > 0)
|
||||
{
|
||||
data.push_back(tangents[i].x);
|
||||
data.push_back(tangents[i].y);
|
||||
data.push_back(tangents[i].z);
|
||||
}
|
||||
if (bitangents.size() > 0)
|
||||
{
|
||||
data.push_back(bitangents[i].x);
|
||||
data.push_back(bitangents[i].y);
|
||||
data.push_back(bitangents[i].z);
|
||||
}
|
||||
}
|
||||
glBindVertexArray(sphereVAO);
|
||||
glBindBuffer(GL_ARRAY_BUFFER, vbo);
|
||||
glBufferData(GL_ARRAY_BUFFER, data.size() * sizeof(float), &data[0], GL_STATIC_DRAW);
|
||||
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ebo);
|
||||
glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices.size() * sizeof(unsigned int), &indices[0], GL_STATIC_DRAW);
|
||||
//float stride = (3 + 2 + 3 + 3 + 3) * sizeof(float);
|
||||
float stride = (3 + 2 + 3) * sizeof(float);
|
||||
glEnableVertexAttribArray(0);
|
||||
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, stride, (GLvoid*)0);
|
||||
glEnableVertexAttribArray(1);
|
||||
glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, stride, (GLvoid*)(3 * sizeof(float)));
|
||||
glEnableVertexAttribArray(2);
|
||||
glVertexAttribPointer(2, 3, GL_FLOAT, GL_FALSE, stride, (GLvoid*)(5 * sizeof(float)));
|
||||
//glEnableVertexAttribArray(3);
|
||||
/* glVertexAttribPointer(3, 3, GL_FLOAT, GL_FALSE, stride, (GLvoid*)(8 * sizeof(float)));
|
||||
glEnableVertexAttribArray(4);
|
||||
glVertexAttribPointer(4, 3, GL_FLOAT, GL_FALSE, stride, (GLvoid*)(11 * sizeof(float)));*/
|
||||
}
|
||||
|
||||
glBindVertexArray(sphereVAO);
|
||||
glDrawElements(GL_TRIANGLE_STRIP, indexCount, GL_UNSIGNED_INT, 0);
|
||||
}
|
||||
|
||||
// RenderQuad() Renders a 1x1 quad in NDC
|
||||
GLuint quadVAO = 0;
|
||||
GLuint quadVBO;
|
||||
void RenderQuad()
|
||||
{
|
||||
if (quadVAO == 0)
|
||||
{
|
||||
// positions
|
||||
glm::vec3 pos1(-1.0, 1.0, 0.0);
|
||||
glm::vec3 pos2(-1.0, -1.0, 0.0);
|
||||
glm::vec3 pos3(1.0, -1.0, 0.0);
|
||||
glm::vec3 pos4(1.0, 1.0, 0.0);
|
||||
// texture coordinates
|
||||
glm::vec2 uv1(0.0, 1.0);
|
||||
glm::vec2 uv2(0.0, 0.0);
|
||||
glm::vec2 uv3(1.0, 0.0);
|
||||
glm::vec2 uv4(1.0, 1.0);
|
||||
// normal vector
|
||||
glm::vec3 nm(0.0, 0.0, 1.0);
|
||||
|
||||
// calculate tangent/bitangent vectors of both triangles
|
||||
glm::vec3 tangent1, bitangent1;
|
||||
glm::vec3 tangent2, bitangent2;
|
||||
// - triangle 1
|
||||
glm::vec3 edge1 = pos2 - pos1;
|
||||
glm::vec3 edge2 = pos3 - pos1;
|
||||
glm::vec2 deltaUV1 = uv2 - uv1;
|
||||
glm::vec2 deltaUV2 = uv3 - uv1;
|
||||
|
||||
GLfloat f = 1.0f / (deltaUV1.x * deltaUV2.y - deltaUV2.x * deltaUV1.y);
|
||||
|
||||
tangent1.x = f * (deltaUV2.y * edge1.x - deltaUV1.y * edge2.x);
|
||||
tangent1.y = f * (deltaUV2.y * edge1.y - deltaUV1.y * edge2.y);
|
||||
tangent1.z = f * (deltaUV2.y * edge1.z - deltaUV1.y * edge2.z);
|
||||
tangent1 = glm::normalize(tangent1);
|
||||
|
||||
bitangent1.x = f * (-deltaUV2.x * edge1.x + deltaUV1.x * edge2.x);
|
||||
bitangent1.y = f * (-deltaUV2.x * edge1.y + deltaUV1.x * edge2.y);
|
||||
bitangent1.z = f * (-deltaUV2.x * edge1.z + deltaUV1.x * edge2.z);
|
||||
bitangent1 = glm::normalize(bitangent1);
|
||||
|
||||
// - triangle 2
|
||||
edge1 = pos3 - pos1;
|
||||
edge2 = pos4 - pos1;
|
||||
deltaUV1 = uv3 - uv1;
|
||||
deltaUV2 = uv4 - uv1;
|
||||
|
||||
f = 1.0f / (deltaUV1.x * deltaUV2.y - deltaUV2.x * deltaUV1.y);
|
||||
|
||||
tangent2.x = f * (deltaUV2.y * edge1.x - deltaUV1.y * edge2.x);
|
||||
tangent2.y = f * (deltaUV2.y * edge1.y - deltaUV1.y * edge2.y);
|
||||
tangent2.z = f * (deltaUV2.y * edge1.z - deltaUV1.y * edge2.z);
|
||||
tangent2 = glm::normalize(tangent2);
|
||||
|
||||
|
||||
bitangent2.x = f * (-deltaUV2.x * edge1.x + deltaUV1.x * edge2.x);
|
||||
bitangent2.y = f * (-deltaUV2.x * edge1.y + deltaUV1.x * edge2.y);
|
||||
bitangent2.z = f * (-deltaUV2.x * edge1.z + deltaUV1.x * edge2.z);
|
||||
bitangent2 = glm::normalize(bitangent2);
|
||||
|
||||
|
||||
GLfloat quadVertices[] = {
|
||||
// Positions // normal // TexCoords // Tangent // Bitangent
|
||||
pos1.x, pos1.y, pos1.z, nm.x, nm.y, nm.z, uv1.x, uv1.y, tangent1.x, tangent1.y, tangent1.z, bitangent1.x, bitangent1.y, bitangent1.z,
|
||||
pos2.x, pos2.y, pos2.z, nm.x, nm.y, nm.z, uv2.x, uv2.y, tangent1.x, tangent1.y, tangent1.z, bitangent1.x, bitangent1.y, bitangent1.z,
|
||||
pos3.x, pos3.y, pos3.z, nm.x, nm.y, nm.z, uv3.x, uv3.y, tangent1.x, tangent1.y, tangent1.z, bitangent1.x, bitangent1.y, bitangent1.z,
|
||||
|
||||
pos1.x, pos1.y, pos1.z, nm.x, nm.y, nm.z, uv1.x, uv1.y, tangent2.x, tangent2.y, tangent2.z, bitangent2.x, bitangent2.y, bitangent2.z,
|
||||
pos3.x, pos3.y, pos3.z, nm.x, nm.y, nm.z, uv3.x, uv3.y, tangent2.x, tangent2.y, tangent2.z, bitangent2.x, bitangent2.y, bitangent2.z,
|
||||
pos4.x, pos4.y, pos4.z, nm.x, nm.y, nm.z, uv4.x, uv4.y, tangent2.x, tangent2.y, tangent2.z, bitangent2.x, bitangent2.y, bitangent2.z
|
||||
};
|
||||
// Setup plane VAO
|
||||
glGenVertexArrays(1, &quadVAO);
|
||||
glGenBuffers(1, &quadVBO);
|
||||
glBindVertexArray(quadVAO);
|
||||
glBindBuffer(GL_ARRAY_BUFFER, quadVBO);
|
||||
glBufferData(GL_ARRAY_BUFFER, sizeof(quadVertices), &quadVertices, GL_STATIC_DRAW);
|
||||
glEnableVertexAttribArray(0);
|
||||
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 14 * sizeof(GLfloat), (GLvoid*)0);
|
||||
glEnableVertexAttribArray(1);
|
||||
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 14 * sizeof(GLfloat), (GLvoid*)(3 * sizeof(GLfloat)));
|
||||
glEnableVertexAttribArray(2);
|
||||
glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 14 * sizeof(GLfloat), (GLvoid*)(6 * sizeof(GLfloat)));
|
||||
glEnableVertexAttribArray(3);
|
||||
glVertexAttribPointer(3, 3, GL_FLOAT, GL_FALSE, 14 * sizeof(GLfloat), (GLvoid*)(8 * sizeof(GLfloat)));
|
||||
glEnableVertexAttribArray(4);
|
||||
glVertexAttribPointer(4, 3, GL_FLOAT, GL_FALSE, 14 * sizeof(GLfloat), (GLvoid*)(11 * sizeof(GLfloat)));
|
||||
}
|
||||
glBindVertexArray(quadVAO);
|
||||
glDrawArrays(GL_TRIANGLES, 0, 6);
|
||||
glBindVertexArray(0);
|
||||
}
|
||||
|
||||
// This function loads a texture from file. Note: texture loading functions like these are usually
|
||||
// managed by a 'Resource Manager' that manages all resources (like textures, models, audio).
|
||||
// For learning purposes we'll just define it as a utility function.
|
||||
GLuint loadTexture(GLchar const * path)
|
||||
{
|
||||
//Generate texture ID and load texture data
|
||||
GLuint textureID;
|
||||
glGenTextures(1, &textureID);
|
||||
int width, height;
|
||||
unsigned char* image = SOIL_load_image(path, &width, &height, 0, SOIL_LOAD_RGB);
|
||||
// Assign texture to ID
|
||||
glBindTexture(GL_TEXTURE_2D, textureID);
|
||||
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, image);
|
||||
glGenerateMipmap(GL_TEXTURE_2D);
|
||||
|
||||
// Parameters
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
|
||||
glBindTexture(GL_TEXTURE_2D, 0);
|
||||
SOIL_free_image_data(image);
|
||||
return textureID;
|
||||
}
|
||||
|
||||
#pragma region "User input"
|
||||
|
||||
bool keys[1024];
|
||||
bool keysPressed[1024];
|
||||
// Moves/alters the camera positions based on user input
|
||||
void Do_Movement()
|
||||
{
|
||||
// Camera controls
|
||||
if (keys[GLFW_KEY_W])
|
||||
camera.ProcessKeyboard(FORWARD, deltaTime);
|
||||
if (keys[GLFW_KEY_S])
|
||||
camera.ProcessKeyboard(BACKWARD, deltaTime);
|
||||
if (keys[GLFW_KEY_A])
|
||||
camera.ProcessKeyboard(LEFT, deltaTime);
|
||||
if (keys[GLFW_KEY_D])
|
||||
camera.ProcessKeyboard(RIGHT, deltaTime);
|
||||
}
|
||||
|
||||
// Is called whenever a key is pressed/released via GLFW
|
||||
void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode)
|
||||
{
|
||||
if (key == GLFW_KEY_ESCAPE && action == GLFW_PRESS)
|
||||
glfwSetWindowShouldClose(window, GL_TRUE);
|
||||
|
||||
if (key >= 0 && key <= 1024)
|
||||
{
|
||||
if (action == GLFW_PRESS)
|
||||
keys[key] = true;
|
||||
else if (action == GLFW_RELEASE)
|
||||
{
|
||||
keys[key] = false;
|
||||
keysPressed[key] = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
GLfloat lastX = 400, lastY = 300;
|
||||
bool firstMouse = true;
|
||||
// Moves/alters the camera positions based on user input
|
||||
void mouse_callback(GLFWwindow* window, double xpos, double ypos)
|
||||
{
|
||||
if (firstMouse)
|
||||
{
|
||||
lastX = xpos;
|
||||
lastY = ypos;
|
||||
firstMouse = false;
|
||||
}
|
||||
|
||||
GLfloat xoffset = xpos - lastX;
|
||||
GLfloat yoffset = lastY - ypos;
|
||||
|
||||
lastX = xpos;
|
||||
lastY = ypos;
|
||||
|
||||
camera.ProcessMouseMovement(xoffset, yoffset);
|
||||
}
|
||||
|
||||
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
|
||||
{
|
||||
camera.ProcessMouseScroll(yoffset);
|
||||
}
|
||||
|
||||
#pragma endregion
|
||||
150
src/6.pbr/1.1.lighting/pbr.frag
Normal file
150
src/6.pbr/1.1.lighting/pbr.frag
Normal file
@@ -0,0 +1,150 @@
|
||||
#version 330 core
|
||||
out vec4 FragColor;
|
||||
in vec2 TexCoords;
|
||||
in vec3 WorldPos;
|
||||
in vec3 Normal;
|
||||
|
||||
// material parameters
|
||||
uniform vec3 albedo;
|
||||
uniform float metallic;
|
||||
uniform float roughness;
|
||||
uniform float ao;
|
||||
|
||||
// lights
|
||||
uniform vec3 lightPositions[4];
|
||||
uniform vec3 lightColors[4];
|
||||
|
||||
uniform vec3 camPos;
|
||||
uniform float exposure;
|
||||
|
||||
const float PI = 3.14159265359;
|
||||
|
||||
vec3 getNormal(vec3 worldNormal, vec3 tangentNormal)
|
||||
{
|
||||
vec3 Q1 = dFdx(WorldPos);
|
||||
vec3 Q2 = dFdy(WorldPos);
|
||||
vec2 st1 = dFdx(TexCoords);
|
||||
vec2 st2 = dFdy(TexCoords);
|
||||
|
||||
vec3 normal = normalize(worldNormal);
|
||||
vec3 tangent = normalize(Q1*st2.t - Q2*st1.t);
|
||||
vec3 binormal = -normalize(cross(normal, tangent));
|
||||
mat3 TBN = mat3(tangent, binormal, normal);
|
||||
|
||||
return normalize(TBN * tangentNormal);
|
||||
}
|
||||
|
||||
float DistributionGGX(vec3 N, vec3 H, float roughness)
|
||||
{
|
||||
float a = roughness*roughness;
|
||||
float a2 = a*a;
|
||||
float NdotH = max(dot(N, H), 0.0);
|
||||
float NdotH2 = NdotH*NdotH;
|
||||
|
||||
float nom = a2;
|
||||
float denom = (NdotH2 * (a2 - 1.0) + 1.0);
|
||||
denom = PI * denom * denom;
|
||||
|
||||
return nom / denom;
|
||||
}
|
||||
|
||||
float GeometrySchlickGGX(float NdotV, float roughness)
|
||||
{
|
||||
float r = (roughness + 1.0);
|
||||
float k = (r*r) / 8.0;
|
||||
|
||||
float nom = NdotV;
|
||||
float denom = NdotV * (1.0 - k) + k;
|
||||
|
||||
return nom / denom;
|
||||
}
|
||||
|
||||
float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness)
|
||||
{
|
||||
float NdotV = max(dot(N, V), 0.0);
|
||||
float NdotL = max(dot(N, L), 0.0);
|
||||
float ggx2 = GeometrySchlickGGX(NdotV, roughness);
|
||||
float ggx1 = GeometrySchlickGGX(NdotL, roughness);
|
||||
|
||||
return ggx1 * ggx2;
|
||||
}
|
||||
|
||||
vec3 fresnelSchlick(float cosTheta, vec3 F0)
|
||||
{
|
||||
return F0 + (1.0 - F0) * pow(1.0 - cosTheta, 5.0);
|
||||
}
|
||||
// ----------------------------------------------------------------------------
|
||||
vec3 fresnelSchlickRoughness(float cosTheta, vec3 F0, float roughness)
|
||||
{
|
||||
return F0 + (max(vec3(1.0 - roughness), F0) - F0) * pow(1.0 - cosTheta, 5.0);
|
||||
}
|
||||
|
||||
void main()
|
||||
{
|
||||
vec3 N = normalize(Normal);
|
||||
vec3 V = normalize(camPos - WorldPos);
|
||||
vec3 R = reflect(-V, N);
|
||||
|
||||
// NOTE(Joey): calculate color/reflectance at normal incidence
|
||||
// NOTE(Joey): if dia-electric (like plastic) use F0 as 0.04 and
|
||||
// if it's a metal, use their albedo color as F0 (metallic workflow)
|
||||
vec3 F0 = vec3(0.04); // NOTE(Joey): base reflectance at incident angle for non-metallic (dia-conductor) surfaces
|
||||
F0 = mix(F0, albedo, metallic);
|
||||
// NOTE(Joey): calculate reflectance w/ (modified for roughness) Fresnel
|
||||
vec3 F = fresnelSchlickRoughness(max(dot(N, V), 0.0), F0, roughness);
|
||||
|
||||
// NOTE(Joey): kS is equal to Fresnel
|
||||
vec3 kS = F;
|
||||
// NOTE(Joey): for energy conservation, the diffuse and specular light can't
|
||||
// be above 1.0 (unless the surface emits light) so to preserve this
|
||||
// relationship the diffuse component (kD) equals 1.0 - kS.
|
||||
vec3 kD = vec3(1.0) - kS;
|
||||
// multiply kD by the inverse metalness such that only non-metals
|
||||
// have diffuse lighting, or a linear blend if partly metal (pure metals have
|
||||
// no diffuse light).
|
||||
kD *= 1.0 - metallic;
|
||||
|
||||
// first do ambient lighting (note that the next IBL tutorial will replace the ambient
|
||||
// lighting with environment lighting).
|
||||
vec3 ambient = vec3(0.01) * albedo * ao;
|
||||
|
||||
// for every light, calculate their contribution to the reflectance equation
|
||||
vec3 Lo = vec3(0.0);
|
||||
for(int i = 0; i < 4; ++i)
|
||||
{
|
||||
vec3 L = normalize(lightPositions[i] - WorldPos);
|
||||
vec3 H = normalize(V + L);
|
||||
float distance = length(lightPositions[i] - WorldPos);
|
||||
float attenuation = 1.0 / distance * distance;
|
||||
vec3 radiance = lightColors[i] * attenuation;
|
||||
|
||||
// NDF
|
||||
float ndf = DistributionGGX(N, H, roughness);
|
||||
|
||||
// Geometry
|
||||
float g = GeometrySmith(N, V, L, roughness);
|
||||
|
||||
// cook-torrance brdf
|
||||
vec3 nominator = ndf * g * F;
|
||||
float denominator = 4 * max(dot(V, N), 0.0) * max(dot(L, N), 0.0) + 0.001; // 0.001 to prevent divide by zero.
|
||||
vec3 brdf = nominator / denominator;
|
||||
|
||||
// NOTE(Joey): scale light by NdotL
|
||||
float NdotL = max(dot(N, L), 0.0);
|
||||
|
||||
// NOTE(Joey): reflectance equation
|
||||
|
||||
Lo += (kD * albedo / PI + kS * brdf) * radiance * NdotL;
|
||||
}
|
||||
|
||||
vec3 color = ambient + Lo;
|
||||
|
||||
// NOTE(Joey): HDR tonemapping
|
||||
// color = vec3(1.0) - exp(-color * exposure);
|
||||
color = color / (color + vec3(1.0));
|
||||
// NOTE(Joey): gamma correct
|
||||
color = pow(color, vec3(1.0/2.2));
|
||||
|
||||
|
||||
FragColor = vec4(color, 1.0);
|
||||
}
|
||||
21
src/6.pbr/1.1.lighting/pbr.vs
Normal file
21
src/6.pbr/1.1.lighting/pbr.vs
Normal file
@@ -0,0 +1,21 @@
|
||||
#version 330 core
|
||||
layout (location = 0) in vec3 pos;
|
||||
layout (location = 1) in vec2 texCoords;
|
||||
layout (location = 2) in vec3 normal;
|
||||
|
||||
out vec2 TexCoords;
|
||||
out vec3 WorldPos;
|
||||
out vec3 Normal;
|
||||
|
||||
uniform mat4 projection;
|
||||
uniform mat4 view;
|
||||
uniform mat4 model;
|
||||
|
||||
void main()
|
||||
{
|
||||
TexCoords = texCoords;
|
||||
WorldPos = vec3(model * vec4(pos, 1.0f));
|
||||
Normal = mat3(model) * normal;
|
||||
|
||||
gl_Position = projection * view * vec4(WorldPos, 1.0);
|
||||
}
|
||||
487
src/6.pbr/1.2.lighting_textured/lighting_textured.cpp
Normal file
487
src/6.pbr/1.2.lighting_textured/lighting_textured.cpp
Normal file
@@ -0,0 +1,487 @@
|
||||
// Std. Includes
|
||||
#include <string>
|
||||
|
||||
// GLEW
|
||||
#define GLEW_STATIC
|
||||
#include <GL/glew.h>
|
||||
|
||||
// GLFW
|
||||
#include <GLFW/glfw3.h>
|
||||
|
||||
// GL includes
|
||||
#include <learnopengl/shader.h>
|
||||
#include <learnopengl/camera.h>
|
||||
#include <learnopengl/model.h>
|
||||
|
||||
// GLM Mathemtics
|
||||
#include <glm/glm.hpp>
|
||||
#include <glm/gtc/matrix_transform.hpp>
|
||||
#include <glm/gtc/type_ptr.hpp>
|
||||
|
||||
// Other Libs
|
||||
#include <SOIL.h>
|
||||
#include <learnopengl/filesystem.h>
|
||||
|
||||
// Properties
|
||||
const GLuint SCR_WIDTH = 1280, SCR_HEIGHT = 720;
|
||||
|
||||
// Function prototypes
|
||||
void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode);
|
||||
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);
|
||||
void mouse_callback(GLFWwindow* window, double xpos, double ypos);
|
||||
void Do_Movement();
|
||||
GLuint loadTexture(GLchar const * path);
|
||||
void RenderQuad();
|
||||
void renderSphere();
|
||||
|
||||
|
||||
// camera
|
||||
Camera camera(glm::vec3(0.0f, 0.0f, 3.0f));
|
||||
|
||||
// timing
|
||||
GLfloat deltaTime = 0.0f;
|
||||
GLfloat lastFrame = 0.0f;
|
||||
|
||||
|
||||
// The MAIN function, from here we start our application and run our Game loop
|
||||
int main()
|
||||
{
|
||||
// Init GLFW
|
||||
glfwInit();
|
||||
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
|
||||
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
|
||||
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
|
||||
glfwWindowHint(GLFW_SAMPLES, 32);
|
||||
glfwWindowHint(GLFW_RESIZABLE, GL_FALSE);
|
||||
|
||||
GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", nullptr, nullptr); // Windowed
|
||||
glfwMakeContextCurrent(window);
|
||||
|
||||
// Set the required callback functions
|
||||
glfwSetKeyCallback(window, key_callback);
|
||||
glfwSetCursorPosCallback(window, mouse_callback);
|
||||
glfwSetScrollCallback(window, scroll_callback);
|
||||
|
||||
// Options
|
||||
glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);
|
||||
|
||||
// Initialize GLEW to setup the OpenGL Function pointers
|
||||
glewExperimental = GL_TRUE;
|
||||
glewInit();
|
||||
|
||||
// Define the viewport dimensions
|
||||
glViewport(0, 0, SCR_WIDTH, SCR_HEIGHT);
|
||||
|
||||
// Setup some OpenGL options
|
||||
glEnable(GL_DEPTH_TEST);
|
||||
|
||||
// load material textures
|
||||
GLuint albedo = loadTexture(FileSystem::getPath("resources/textures/pbr/rusted_iron/albedo.png").c_str());
|
||||
GLuint normal = loadTexture(FileSystem::getPath("resources/textures/pbr/rusted_iron/normal.png").c_str());
|
||||
GLuint metallic = loadTexture(FileSystem::getPath("resources/textures/pbr/rusted_iron/metallic.png").c_str());
|
||||
GLuint roughness = loadTexture(FileSystem::getPath("resources/textures/pbr/rusted_iron/roughness.png").c_str());
|
||||
GLuint ao = loadTexture(FileSystem::getPath("resources/textures/pbr/rusted_iron/ao.png").c_str());
|
||||
|
||||
// Setup and compile our shaders
|
||||
Shader shader("pbr.vs", "pbr.frag");
|
||||
|
||||
// set material texture uniforms
|
||||
shader.Use();
|
||||
glUniform1i(glGetUniformLocation(shader.Program, "albedo"), 0);
|
||||
glUniform1i(glGetUniformLocation(shader.Program, "normal"), 1);
|
||||
glUniform1i(glGetUniformLocation(shader.Program, "metallic"), 2);
|
||||
glUniform1i(glGetUniformLocation(shader.Program, "roughness"), 3);
|
||||
glUniform1i(glGetUniformLocation(shader.Program, "ao"), 4);
|
||||
|
||||
// projection setup
|
||||
glm::mat4 projection = glm::perspective(camera.Zoom, (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f);
|
||||
glUniformMatrix4fv(glGetUniformLocation(shader.Program, "projection"), 1, GL_FALSE, glm::value_ptr(projection));
|
||||
|
||||
// lights
|
||||
glm::vec3 lightPositions[] = {
|
||||
glm::vec3(-10.0f, 10.0f, 10.0f),
|
||||
glm::vec3( 10.0f, 10.0f, 10.0f),
|
||||
glm::vec3(-10.0f, -10.0f, 10.0f),
|
||||
glm::vec3( 10.0f, -10.0f, 10.0f),
|
||||
};
|
||||
glm::vec3 lightColors[] = {
|
||||
glm::vec3(2.0f, 2.0f, 2.0f),
|
||||
glm::vec3(2.0f, 2.0f, 2.0f),
|
||||
glm::vec3(2.0f, 2.0f, 2.0f),
|
||||
glm::vec3(2.0f, 2.0f, 2.0f)
|
||||
};
|
||||
int nrRows = 7;
|
||||
int nrColumns = 7;
|
||||
float spacing = 2.5;
|
||||
|
||||
|
||||
// Game loop
|
||||
while (!glfwWindowShouldClose(window))
|
||||
{
|
||||
// set frame time
|
||||
GLfloat currentFrame = glfwGetTime();
|
||||
deltaTime = currentFrame - lastFrame;
|
||||
lastFrame = currentFrame;
|
||||
|
||||
// check and call events
|
||||
glfwPollEvents();
|
||||
Do_Movement();
|
||||
|
||||
// clear the colorbuffer
|
||||
glClearColor(0.1f, 0.1f, 0.1f, 1.0f);
|
||||
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
|
||||
|
||||
// configure view matrix
|
||||
shader.Use();
|
||||
glm::mat4 view = camera.GetViewMatrix();
|
||||
glUniformMatrix4fv(glGetUniformLocation(shader.Program, "view"), 1, GL_FALSE, glm::value_ptr(view));
|
||||
|
||||
// setup relevant shader uniforms
|
||||
glUniform3fv(glGetUniformLocation(shader.Program, "camPos"), 1, &camera.Position[0]);
|
||||
|
||||
// set material
|
||||
glActiveTexture(GL_TEXTURE0);
|
||||
glBindTexture(GL_TEXTURE_2D, albedo);
|
||||
glActiveTexture(GL_TEXTURE1);
|
||||
glBindTexture(GL_TEXTURE_2D, normal);
|
||||
glActiveTexture(GL_TEXTURE2);
|
||||
glBindTexture(GL_TEXTURE_2D, metallic);
|
||||
glActiveTexture(GL_TEXTURE3);
|
||||
glBindTexture(GL_TEXTURE_2D, roughness);
|
||||
glActiveTexture(GL_TEXTURE4);
|
||||
glBindTexture(GL_TEXTURE_2D, ao);
|
||||
|
||||
// render rows*column number of spheres with varying metallic/roughness values scaled by rows and columns respectively
|
||||
glm::mat4 model;
|
||||
for (int row = 0; row < nrRows; ++row)
|
||||
{
|
||||
for (int col = 0; col < nrColumns; ++col)
|
||||
{
|
||||
model = glm::mat4();
|
||||
model = glm::translate(model, glm::vec3(
|
||||
(float)(col - (nrColumns / 2)) * spacing,
|
||||
(float)(row - (nrRows / 2)) * spacing,
|
||||
0.0f
|
||||
));
|
||||
glUniformMatrix4fv(glGetUniformLocation(shader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
|
||||
renderSphere();
|
||||
}
|
||||
}
|
||||
|
||||
// render light source (simply re-render sphere at light positions)
|
||||
// this looks a bit off as we use the same shader, but it'll make their positions obvious and
|
||||
// keeps the codeprint small.
|
||||
for (unsigned int i = 0; i < sizeof(lightPositions) / sizeof(lightPositions[0]); ++i)
|
||||
{
|
||||
glUniform3fv(glGetUniformLocation(shader.Program, ("lightPositions[" + std::to_string(i) + "]").c_str()), 1, &lightPositions[i][0]);
|
||||
glUniform3fv(glGetUniformLocation(shader.Program, ("lightColors[" + std::to_string(i) + "]").c_str()), 1, &lightColors[i][0]);
|
||||
|
||||
model = glm::mat4();
|
||||
model = glm::translate(model, lightPositions[i]);
|
||||
model = glm::scale(model, glm::vec3(0.5f));
|
||||
glUniformMatrix4fv(glGetUniformLocation(shader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
|
||||
renderSphere();
|
||||
}
|
||||
|
||||
// Swap the buffers
|
||||
glfwSwapBuffers(window);
|
||||
}
|
||||
|
||||
glfwTerminate();
|
||||
return 0;
|
||||
}
|
||||
|
||||
unsigned int sphereVAO = 0;
|
||||
unsigned int indexCount;
|
||||
void renderSphere()
|
||||
{
|
||||
if (sphereVAO == 0)
|
||||
{
|
||||
glGenVertexArrays(1, &sphereVAO);
|
||||
|
||||
unsigned int vbo, ebo;
|
||||
glGenBuffers(1, &vbo);
|
||||
glGenBuffers(1, &ebo);
|
||||
|
||||
std::vector<glm::vec3> positions;
|
||||
std::vector<glm::vec2> uv;
|
||||
std::vector<glm::vec3> normals;
|
||||
std::vector<glm::vec3> tangents;
|
||||
std::vector<glm::vec3> bitangents;
|
||||
std::vector<unsigned int> indices;
|
||||
|
||||
const unsigned int X_SEGMENTS = 64;
|
||||
const unsigned int Y_SEGMENTS = 64;
|
||||
const float PI = 3.14159265359;
|
||||
for (unsigned int y = 0; y <= Y_SEGMENTS; ++y)
|
||||
{
|
||||
for (unsigned int x = 0; x <= X_SEGMENTS; ++x)
|
||||
{
|
||||
float xSegment = (float)x / (float)X_SEGMENTS;
|
||||
float ySegment = (float)y / (float)Y_SEGMENTS;
|
||||
float xPos = std::cos(xSegment * 2.0f * PI) * std::sin(ySegment * PI); // NOTE(Joey): TAU is 2PI
|
||||
float yPos = std::cos(ySegment * PI);
|
||||
float zPos = std::sin(xSegment * 2.0f * PI) * std::sin(ySegment * PI);
|
||||
|
||||
positions.push_back(glm::vec3(xPos, yPos, zPos));
|
||||
uv.push_back(glm::vec2(xSegment, ySegment));
|
||||
normals.push_back(glm::vec3(xPos, yPos, zPos));
|
||||
}
|
||||
}
|
||||
|
||||
bool oddRow = false;
|
||||
for (int y = 0; y < Y_SEGMENTS; ++y)
|
||||
{
|
||||
if (!oddRow) // NOTE(Joey): even rows: y == 0, y == 2; and so on
|
||||
{
|
||||
for (int x = 0; x <= X_SEGMENTS; ++x)
|
||||
{
|
||||
indices.push_back(y * (X_SEGMENTS + 1) + x);
|
||||
indices.push_back((y + 1) * (X_SEGMENTS + 1) + x);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (int x = X_SEGMENTS; x >= 0; --x)
|
||||
{
|
||||
indices.push_back((y + 1) * (X_SEGMENTS + 1) + x);
|
||||
indices.push_back(y * (X_SEGMENTS + 1) + x);
|
||||
}
|
||||
}
|
||||
oddRow = !oddRow;
|
||||
}
|
||||
indexCount = indices.size();
|
||||
std::vector<float> data;
|
||||
for (int i = 0; i < positions.size(); ++i)
|
||||
{
|
||||
data.push_back(positions[i].x);
|
||||
data.push_back(positions[i].y);
|
||||
data.push_back(positions[i].z);
|
||||
if (uv.size() > 0)
|
||||
{
|
||||
data.push_back(uv[i].x);
|
||||
data.push_back(uv[i].y);
|
||||
}
|
||||
if (normals.size() > 0)
|
||||
{
|
||||
data.push_back(normals[i].x);
|
||||
data.push_back(normals[i].y);
|
||||
data.push_back(normals[i].z);
|
||||
}
|
||||
if (tangents.size() > 0)
|
||||
{
|
||||
data.push_back(tangents[i].x);
|
||||
data.push_back(tangents[i].y);
|
||||
data.push_back(tangents[i].z);
|
||||
}
|
||||
if (bitangents.size() > 0)
|
||||
{
|
||||
data.push_back(bitangents[i].x);
|
||||
data.push_back(bitangents[i].y);
|
||||
data.push_back(bitangents[i].z);
|
||||
}
|
||||
}
|
||||
glBindVertexArray(sphereVAO);
|
||||
glBindBuffer(GL_ARRAY_BUFFER, vbo);
|
||||
glBufferData(GL_ARRAY_BUFFER, data.size() * sizeof(float), &data[0], GL_STATIC_DRAW);
|
||||
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ebo);
|
||||
glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices.size() * sizeof(unsigned int), &indices[0], GL_STATIC_DRAW);
|
||||
//float stride = (3 + 2 + 3 + 3 + 3) * sizeof(float);
|
||||
float stride = (3 + 2 + 3) * sizeof(float);
|
||||
glEnableVertexAttribArray(0);
|
||||
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, stride, (GLvoid*)0);
|
||||
glEnableVertexAttribArray(1);
|
||||
glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, stride, (GLvoid*)(3 * sizeof(float)));
|
||||
glEnableVertexAttribArray(2);
|
||||
glVertexAttribPointer(2, 3, GL_FLOAT, GL_FALSE, stride, (GLvoid*)(5 * sizeof(float)));
|
||||
//glEnableVertexAttribArray(3);
|
||||
/* glVertexAttribPointer(3, 3, GL_FLOAT, GL_FALSE, stride, (GLvoid*)(8 * sizeof(float)));
|
||||
glEnableVertexAttribArray(4);
|
||||
glVertexAttribPointer(4, 3, GL_FLOAT, GL_FALSE, stride, (GLvoid*)(11 * sizeof(float)));*/
|
||||
}
|
||||
|
||||
glBindVertexArray(sphereVAO);
|
||||
glDrawElements(GL_TRIANGLE_STRIP, indexCount, GL_UNSIGNED_INT, 0);
|
||||
}
|
||||
|
||||
// RenderQuad() Renders a 1x1 quad in NDC
|
||||
GLuint quadVAO = 0;
|
||||
GLuint quadVBO;
|
||||
void RenderQuad()
|
||||
{
|
||||
if (quadVAO == 0)
|
||||
{
|
||||
// positions
|
||||
glm::vec3 pos1(-1.0, 1.0, 0.0);
|
||||
glm::vec3 pos2(-1.0, -1.0, 0.0);
|
||||
glm::vec3 pos3(1.0, -1.0, 0.0);
|
||||
glm::vec3 pos4(1.0, 1.0, 0.0);
|
||||
// texture coordinates
|
||||
glm::vec2 uv1(0.0, 1.0);
|
||||
glm::vec2 uv2(0.0, 0.0);
|
||||
glm::vec2 uv3(1.0, 0.0);
|
||||
glm::vec2 uv4(1.0, 1.0);
|
||||
// normal vector
|
||||
glm::vec3 nm(0.0, 0.0, 1.0);
|
||||
|
||||
// calculate tangent/bitangent vectors of both triangles
|
||||
glm::vec3 tangent1, bitangent1;
|
||||
glm::vec3 tangent2, bitangent2;
|
||||
// - triangle 1
|
||||
glm::vec3 edge1 = pos2 - pos1;
|
||||
glm::vec3 edge2 = pos3 - pos1;
|
||||
glm::vec2 deltaUV1 = uv2 - uv1;
|
||||
glm::vec2 deltaUV2 = uv3 - uv1;
|
||||
|
||||
GLfloat f = 1.0f / (deltaUV1.x * deltaUV2.y - deltaUV2.x * deltaUV1.y);
|
||||
|
||||
tangent1.x = f * (deltaUV2.y * edge1.x - deltaUV1.y * edge2.x);
|
||||
tangent1.y = f * (deltaUV2.y * edge1.y - deltaUV1.y * edge2.y);
|
||||
tangent1.z = f * (deltaUV2.y * edge1.z - deltaUV1.y * edge2.z);
|
||||
tangent1 = glm::normalize(tangent1);
|
||||
|
||||
bitangent1.x = f * (-deltaUV2.x * edge1.x + deltaUV1.x * edge2.x);
|
||||
bitangent1.y = f * (-deltaUV2.x * edge1.y + deltaUV1.x * edge2.y);
|
||||
bitangent1.z = f * (-deltaUV2.x * edge1.z + deltaUV1.x * edge2.z);
|
||||
bitangent1 = glm::normalize(bitangent1);
|
||||
|
||||
// - triangle 2
|
||||
edge1 = pos3 - pos1;
|
||||
edge2 = pos4 - pos1;
|
||||
deltaUV1 = uv3 - uv1;
|
||||
deltaUV2 = uv4 - uv1;
|
||||
|
||||
f = 1.0f / (deltaUV1.x * deltaUV2.y - deltaUV2.x * deltaUV1.y);
|
||||
|
||||
tangent2.x = f * (deltaUV2.y * edge1.x - deltaUV1.y * edge2.x);
|
||||
tangent2.y = f * (deltaUV2.y * edge1.y - deltaUV1.y * edge2.y);
|
||||
tangent2.z = f * (deltaUV2.y * edge1.z - deltaUV1.y * edge2.z);
|
||||
tangent2 = glm::normalize(tangent2);
|
||||
|
||||
|
||||
bitangent2.x = f * (-deltaUV2.x * edge1.x + deltaUV1.x * edge2.x);
|
||||
bitangent2.y = f * (-deltaUV2.x * edge1.y + deltaUV1.x * edge2.y);
|
||||
bitangent2.z = f * (-deltaUV2.x * edge1.z + deltaUV1.x * edge2.z);
|
||||
bitangent2 = glm::normalize(bitangent2);
|
||||
|
||||
|
||||
GLfloat quadVertices[] = {
|
||||
// Positions // normal // TexCoords // Tangent // Bitangent
|
||||
pos1.x, pos1.y, pos1.z, nm.x, nm.y, nm.z, uv1.x, uv1.y, tangent1.x, tangent1.y, tangent1.z, bitangent1.x, bitangent1.y, bitangent1.z,
|
||||
pos2.x, pos2.y, pos2.z, nm.x, nm.y, nm.z, uv2.x, uv2.y, tangent1.x, tangent1.y, tangent1.z, bitangent1.x, bitangent1.y, bitangent1.z,
|
||||
pos3.x, pos3.y, pos3.z, nm.x, nm.y, nm.z, uv3.x, uv3.y, tangent1.x, tangent1.y, tangent1.z, bitangent1.x, bitangent1.y, bitangent1.z,
|
||||
|
||||
pos1.x, pos1.y, pos1.z, nm.x, nm.y, nm.z, uv1.x, uv1.y, tangent2.x, tangent2.y, tangent2.z, bitangent2.x, bitangent2.y, bitangent2.z,
|
||||
pos3.x, pos3.y, pos3.z, nm.x, nm.y, nm.z, uv3.x, uv3.y, tangent2.x, tangent2.y, tangent2.z, bitangent2.x, bitangent2.y, bitangent2.z,
|
||||
pos4.x, pos4.y, pos4.z, nm.x, nm.y, nm.z, uv4.x, uv4.y, tangent2.x, tangent2.y, tangent2.z, bitangent2.x, bitangent2.y, bitangent2.z
|
||||
};
|
||||
// Setup plane VAO
|
||||
glGenVertexArrays(1, &quadVAO);
|
||||
glGenBuffers(1, &quadVBO);
|
||||
glBindVertexArray(quadVAO);
|
||||
glBindBuffer(GL_ARRAY_BUFFER, quadVBO);
|
||||
glBufferData(GL_ARRAY_BUFFER, sizeof(quadVertices), &quadVertices, GL_STATIC_DRAW);
|
||||
glEnableVertexAttribArray(0);
|
||||
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 14 * sizeof(GLfloat), (GLvoid*)0);
|
||||
glEnableVertexAttribArray(1);
|
||||
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 14 * sizeof(GLfloat), (GLvoid*)(3 * sizeof(GLfloat)));
|
||||
glEnableVertexAttribArray(2);
|
||||
glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 14 * sizeof(GLfloat), (GLvoid*)(6 * sizeof(GLfloat)));
|
||||
glEnableVertexAttribArray(3);
|
||||
glVertexAttribPointer(3, 3, GL_FLOAT, GL_FALSE, 14 * sizeof(GLfloat), (GLvoid*)(8 * sizeof(GLfloat)));
|
||||
glEnableVertexAttribArray(4);
|
||||
glVertexAttribPointer(4, 3, GL_FLOAT, GL_FALSE, 14 * sizeof(GLfloat), (GLvoid*)(11 * sizeof(GLfloat)));
|
||||
}
|
||||
glBindVertexArray(quadVAO);
|
||||
glDrawArrays(GL_TRIANGLES, 0, 6);
|
||||
glBindVertexArray(0);
|
||||
}
|
||||
|
||||
// This function loads a texture from file. Note: texture loading functions like these are usually
|
||||
// managed by a 'Resource Manager' that manages all resources (like textures, models, audio).
|
||||
// For learning purposes we'll just define it as a utility function.
|
||||
GLuint loadTexture(GLchar const * path)
|
||||
{
|
||||
//Generate texture ID and load texture data
|
||||
GLuint textureID;
|
||||
glGenTextures(1, &textureID);
|
||||
int width, height;
|
||||
unsigned char* image = SOIL_load_image(path, &width, &height, 0, SOIL_LOAD_RGB);
|
||||
// Assign texture to ID
|
||||
glBindTexture(GL_TEXTURE_2D, textureID);
|
||||
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, image);
|
||||
glGenerateMipmap(GL_TEXTURE_2D);
|
||||
|
||||
// Parameters
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
|
||||
glBindTexture(GL_TEXTURE_2D, 0);
|
||||
SOIL_free_image_data(image);
|
||||
return textureID;
|
||||
}
|
||||
|
||||
#pragma region "User input"
|
||||
|
||||
bool keys[1024];
|
||||
bool keysPressed[1024];
|
||||
// Moves/alters the camera positions based on user input
|
||||
void Do_Movement()
|
||||
{
|
||||
// Camera controls
|
||||
if (keys[GLFW_KEY_W])
|
||||
camera.ProcessKeyboard(FORWARD, deltaTime);
|
||||
if (keys[GLFW_KEY_S])
|
||||
camera.ProcessKeyboard(BACKWARD, deltaTime);
|
||||
if (keys[GLFW_KEY_A])
|
||||
camera.ProcessKeyboard(LEFT, deltaTime);
|
||||
if (keys[GLFW_KEY_D])
|
||||
camera.ProcessKeyboard(RIGHT, deltaTime);
|
||||
}
|
||||
|
||||
// Is called whenever a key is pressed/released via GLFW
|
||||
void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode)
|
||||
{
|
||||
if (key == GLFW_KEY_ESCAPE && action == GLFW_PRESS)
|
||||
glfwSetWindowShouldClose(window, GL_TRUE);
|
||||
|
||||
if (key >= 0 && key <= 1024)
|
||||
{
|
||||
if (action == GLFW_PRESS)
|
||||
keys[key] = true;
|
||||
else if (action == GLFW_RELEASE)
|
||||
{
|
||||
keys[key] = false;
|
||||
keysPressed[key] = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
GLfloat lastX = 400, lastY = 300;
|
||||
bool firstMouse = true;
|
||||
// Moves/alters the camera positions based on user input
|
||||
void mouse_callback(GLFWwindow* window, double xpos, double ypos)
|
||||
{
|
||||
if (firstMouse)
|
||||
{
|
||||
lastX = xpos;
|
||||
lastY = ypos;
|
||||
firstMouse = false;
|
||||
}
|
||||
|
||||
GLfloat xoffset = xpos - lastX;
|
||||
GLfloat yoffset = lastY - ypos;
|
||||
|
||||
lastX = xpos;
|
||||
lastY = ypos;
|
||||
|
||||
camera.ProcessMouseMovement(xoffset, yoffset);
|
||||
}
|
||||
|
||||
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
|
||||
{
|
||||
camera.ProcessMouseScroll(yoffset);
|
||||
}
|
||||
|
||||
#pragma endregion
|
||||
157
src/6.pbr/1.2.lighting_textured/pbr.frag
Normal file
157
src/6.pbr/1.2.lighting_textured/pbr.frag
Normal file
@@ -0,0 +1,157 @@
|
||||
#version 330 core
|
||||
out vec4 FragColor;
|
||||
in vec2 TexCoords;
|
||||
in vec3 WorldPos;
|
||||
in vec3 Normal;
|
||||
|
||||
// material parameters
|
||||
uniform sampler2D albedo;
|
||||
uniform sampler2D normal;
|
||||
uniform sampler2D metallic;
|
||||
uniform sampler2D roughness;
|
||||
uniform sampler2D ao;
|
||||
|
||||
// lights
|
||||
uniform vec3 lightPositions[4];
|
||||
uniform vec3 lightColors[4];
|
||||
|
||||
uniform vec3 camPos;
|
||||
uniform float exposure;
|
||||
|
||||
const float PI = 3.14159265359;
|
||||
|
||||
vec3 getNormal(vec3 worldNormal, vec3 tangentNormal)
|
||||
{
|
||||
vec3 Q1 = dFdx(WorldPos);
|
||||
vec3 Q2 = dFdy(WorldPos);
|
||||
vec2 st1 = dFdx(TexCoords);
|
||||
vec2 st2 = dFdy(TexCoords);
|
||||
|
||||
vec3 normal = normalize(worldNormal);
|
||||
vec3 tangent = normalize(Q1*st2.t - Q2*st1.t);
|
||||
vec3 binormal = -normalize(cross(normal, tangent));
|
||||
mat3 TBN = mat3(tangent, binormal, normal);
|
||||
|
||||
return normalize(TBN * tangentNormal);
|
||||
}
|
||||
|
||||
float DistributionGGX(vec3 N, vec3 H, float roughness)
|
||||
{
|
||||
float a = roughness*roughness;
|
||||
float a2 = a*a;
|
||||
float NdotH = max(dot(N, H), 0.0);
|
||||
float NdotH2 = NdotH*NdotH;
|
||||
|
||||
float nom = a2;
|
||||
float denom = (NdotH2 * (a2 - 1.0) + 1.0);
|
||||
denom = PI * denom * denom;
|
||||
|
||||
return nom / denom;
|
||||
}
|
||||
|
||||
float GeometrySchlickGGX(float NdotV, float roughness)
|
||||
{
|
||||
float r = (roughness + 1.0);
|
||||
float k = (r*r) / 8.0;
|
||||
|
||||
float nom = NdotV;
|
||||
float denom = NdotV * (1.0 - k) + k;
|
||||
|
||||
return nom / denom;
|
||||
}
|
||||
|
||||
float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness)
|
||||
{
|
||||
float NdotV = max(dot(N, V), 0.0);
|
||||
float NdotL = max(dot(N, L), 0.0);
|
||||
float ggx2 = GeometrySchlickGGX(NdotV, roughness);
|
||||
float ggx1 = GeometrySchlickGGX(NdotL, roughness);
|
||||
|
||||
return ggx1 * ggx2;
|
||||
}
|
||||
|
||||
vec3 fresnelSchlick(float cosTheta, vec3 F0)
|
||||
{
|
||||
return F0 + (1.0 - F0) * pow(1.0 - cosTheta, 5.0);
|
||||
}
|
||||
// ----------------------------------------------------------------------------
|
||||
vec3 fresnelSchlickRoughness(float cosTheta, vec3 F0, float roughness)
|
||||
{
|
||||
return F0 + (max(vec3(1.0 - roughness), F0) - F0) * pow(1.0 - cosTheta, 5.0);
|
||||
}
|
||||
|
||||
void main()
|
||||
{
|
||||
vec3 albedo = pow(texture(albedo, TexCoords).rgb, vec3(2.2));
|
||||
// vec3 normal = getWorldNormalFromTangentSpace(texture(normal, TexCoords).rgb);
|
||||
float metallic = texture(metallic, TexCoords).r;
|
||||
float roughness = texture(roughness, TexCoords).r;
|
||||
float ao = texture(ao, TexCoords).r;
|
||||
|
||||
vec3 N = normalize(Normal);
|
||||
vec3 V = normalize(camPos - WorldPos);
|
||||
vec3 R = reflect(-V, N);
|
||||
|
||||
// NOTE(Joey): calculate color/reflectance at normal incidence
|
||||
// NOTE(Joey): if dia-electric (like plastic) use F0 as 0.04 and
|
||||
// if it's a metal, use their albedo color as F0 (metallic workflow)
|
||||
vec3 F0 = vec3(0.04); // NOTE(Joey): base reflectance at incident angle for non-metallic (dia-conductor) surfaces
|
||||
F0 = mix(F0, albedo, metallic);
|
||||
// NOTE(Joey): calculate reflectance w/ (modified for roughness) Fresnel
|
||||
vec3 F = fresnelSchlickRoughness(max(dot(N, V), 0.0), F0, roughness);
|
||||
|
||||
// NOTE(Joey): kS is equal to Fresnel
|
||||
vec3 kS = F;
|
||||
// NOTE(Joey): for energy conservation, the diffuse and specular light can't
|
||||
// be above 1.0 (unless the surface emits light) so to preserve this
|
||||
// relationship the diffuse component (kD) equals 1.0 - kS.
|
||||
vec3 kD = vec3(1.0) - kS;
|
||||
// multiply kD by the inverse metalness such that only non-metals
|
||||
// have diffuse lighting, or a linear blend if partly metal (pure metals have
|
||||
// no diffuse light).
|
||||
kD *= 1.0 - metallic;
|
||||
|
||||
// first do ambient lighting (note that the next IBL tutorial will replace the ambient
|
||||
// lighting with environment lighting).
|
||||
vec3 ambient = vec3(0.01) * albedo * ao;
|
||||
|
||||
// for every light, calculate their contribution to the reflectance equation
|
||||
vec3 Lo = vec3(0.0);
|
||||
for(int i = 0; i < 4; ++i)
|
||||
{
|
||||
vec3 L = normalize(lightPositions[i] - WorldPos);
|
||||
vec3 H = normalize(V + L);
|
||||
float distance = length(lightPositions[i] - WorldPos);
|
||||
float attenuation = 1.0 / distance * distance;
|
||||
vec3 radiance = lightColors[i] * attenuation;
|
||||
|
||||
// NDF
|
||||
float ndf = DistributionGGX(N, H, roughness);
|
||||
|
||||
// Geometry
|
||||
float g = GeometrySmith(N, V, L, roughness);
|
||||
|
||||
// cook-torrance brdf
|
||||
vec3 nominator = ndf * g * F;
|
||||
float denominator = 4 * max(dot(V, N), 0.0) * max(dot(L, N), 0.0) + 0.001; // 0.001 to prevent divide by zero.
|
||||
vec3 brdf = nominator / denominator;
|
||||
|
||||
// NOTE(Joey): scale light by NdotL
|
||||
float NdotL = max(dot(N, L), 0.0);
|
||||
|
||||
// NOTE(Joey): reflectance equation
|
||||
|
||||
Lo += (kD * albedo / PI + kS * brdf) * radiance * NdotL;
|
||||
}
|
||||
|
||||
vec3 color = ambient + Lo;
|
||||
|
||||
// NOTE(Joey): HDR tonemapping
|
||||
// color = vec3(1.0) - exp(-color * exposure);
|
||||
color = color / (color + vec3(1.0));
|
||||
// NOTE(Joey): gamma correct
|
||||
color = pow(color, vec3(1.0/2.2));
|
||||
|
||||
|
||||
FragColor = vec4(color, 0.0, 1.0);
|
||||
}
|
||||
21
src/6.pbr/1.2.lighting_textured/pbr.vs
Normal file
21
src/6.pbr/1.2.lighting_textured/pbr.vs
Normal file
@@ -0,0 +1,21 @@
|
||||
#version 330 core
|
||||
layout (location = 0) in vec3 pos;
|
||||
layout (location = 1) in vec2 texCoords;
|
||||
layout (location = 2) in vec3 normal;
|
||||
|
||||
out vec2 TexCoords;
|
||||
out vec3 WorldPos;
|
||||
out vec3 Normal;
|
||||
|
||||
uniform mat4 projection;
|
||||
uniform mat4 view;
|
||||
uniform mat4 model;
|
||||
|
||||
void main()
|
||||
{
|
||||
TexCoords = texCoords;
|
||||
WorldPos = vec3(model * vec4(pos, 1.0f));
|
||||
Normal = mat3(model) * normal;
|
||||
|
||||
gl_Position = projection * view * vec4(WorldPos, 1.0);
|
||||
}
|
||||
Reference in New Issue
Block a user