mirror of
https://github.com/JoeyDeVries/LearnOpenGL.git
synced 2026-01-02 04:37:54 +08:00
Merge pull request #307 from alexpanter/master
Add pbr bloom example code
This commit is contained in:
@@ -183,6 +183,7 @@ set(GUEST_ARTICLES
|
||||
#8.guest/2021/3.tessellation/terrain_cpu_src
|
||||
8.guest/2021/4.dsa
|
||||
8.guest/2022/5.computeshader_helloworld
|
||||
8.guest/2022/6.physically_based_bloom
|
||||
)
|
||||
|
||||
configure_file(configuration/root_directory.h.in configuration/root_directory.h)
|
||||
|
||||
49
src/8.guest/2022/6.physically_based_bloom/6.bloom.fs
Normal file
49
src/8.guest/2022/6.physically_based_bloom/6.bloom.fs
Normal file
@@ -0,0 +1,49 @@
|
||||
#version 330 core
|
||||
layout (location = 0) out vec4 FragColor;
|
||||
layout (location = 1) out vec4 BrightColor;
|
||||
|
||||
in VS_OUT {
|
||||
vec3 FragPos;
|
||||
vec3 Normal;
|
||||
vec2 TexCoords;
|
||||
} fs_in;
|
||||
|
||||
struct Light {
|
||||
vec3 Position;
|
||||
vec3 Color;
|
||||
};
|
||||
|
||||
uniform Light lights[4];
|
||||
uniform sampler2D diffuseTexture;
|
||||
uniform vec3 viewPos;
|
||||
|
||||
void main()
|
||||
{
|
||||
vec3 color = texture(diffuseTexture, fs_in.TexCoords).rgb;
|
||||
vec3 normal = normalize(fs_in.Normal);
|
||||
// ambient
|
||||
vec3 ambient = 0.0 * color;
|
||||
// lighting
|
||||
vec3 lighting = vec3(0.0);
|
||||
vec3 viewDir = normalize(viewPos - fs_in.FragPos);
|
||||
for(int i = 0; i < 4; i++)
|
||||
{
|
||||
// diffuse
|
||||
vec3 lightDir = normalize(lights[i].Position - fs_in.FragPos);
|
||||
float diff = max(dot(lightDir, normal), 0.0);
|
||||
vec3 result = lights[i].Color * diff * color;
|
||||
// attenuation (use quadratic as we have gamma correction)
|
||||
float distance = length(fs_in.FragPos - lights[i].Position);
|
||||
result *= 1.0 / (distance * distance);
|
||||
lighting += result;
|
||||
|
||||
}
|
||||
vec3 result = ambient + lighting;
|
||||
// check whether result is higher than some threshold, if so, output as bloom threshold color
|
||||
float brightness = dot(result, vec3(0.2126, 0.7152, 0.0722));
|
||||
if(brightness > 1.0)
|
||||
BrightColor = vec4(result, 1.0);
|
||||
else
|
||||
BrightColor = vec4(0.0, 0.0, 0.0, 1.0);
|
||||
FragColor = vec4(result, 1.0);
|
||||
}
|
||||
25
src/8.guest/2022/6.physically_based_bloom/6.bloom.vs
Normal file
25
src/8.guest/2022/6.physically_based_bloom/6.bloom.vs
Normal file
@@ -0,0 +1,25 @@
|
||||
#version 330 core
|
||||
layout (location = 0) in vec3 aPos;
|
||||
layout (location = 1) in vec3 aNormal;
|
||||
layout (location = 2) in vec2 aTexCoords;
|
||||
|
||||
out VS_OUT {
|
||||
vec3 FragPos;
|
||||
vec3 Normal;
|
||||
vec2 TexCoords;
|
||||
} vs_out;
|
||||
|
||||
uniform mat4 projection;
|
||||
uniform mat4 view;
|
||||
uniform mat4 model;
|
||||
|
||||
void main()
|
||||
{
|
||||
vs_out.FragPos = vec3(model * vec4(aPos, 1.0));
|
||||
vs_out.TexCoords = aTexCoords;
|
||||
|
||||
mat3 normalMatrix = transpose(inverse(mat3(model)));
|
||||
vs_out.Normal = normalize(normalMatrix * aNormal);
|
||||
|
||||
gl_Position = projection * view * model * vec4(aPos, 1.0);
|
||||
}
|
||||
50
src/8.guest/2022/6.physically_based_bloom/6.bloom_final.fs
Normal file
50
src/8.guest/2022/6.physically_based_bloom/6.bloom_final.fs
Normal file
@@ -0,0 +1,50 @@
|
||||
#version 330 core
|
||||
out vec4 FragColor;
|
||||
|
||||
in vec2 TexCoords;
|
||||
|
||||
uniform sampler2D scene;
|
||||
uniform sampler2D bloomBlur;
|
||||
uniform float exposure;
|
||||
uniform float bloomStrength = 0.04f;
|
||||
uniform int programChoice;
|
||||
|
||||
vec3 bloom_none()
|
||||
{
|
||||
vec3 hdrColor = texture(scene, TexCoords).rgb;
|
||||
return hdrColor;
|
||||
}
|
||||
|
||||
vec3 bloom_old()
|
||||
{
|
||||
vec3 hdrColor = texture(scene, TexCoords).rgb;
|
||||
vec3 bloomColor = texture(bloomBlur, TexCoords).rgb;
|
||||
return hdrColor + bloomColor; // additive blending
|
||||
}
|
||||
|
||||
vec3 bloom_new()
|
||||
{
|
||||
vec3 hdrColor = texture(scene, TexCoords).rgb;
|
||||
vec3 bloomColor = texture(bloomBlur, TexCoords).rgb;
|
||||
return mix(hdrColor, bloomColor, bloomStrength); // linear interpolation
|
||||
}
|
||||
|
||||
void main()
|
||||
{
|
||||
// to bloom or not to bloom
|
||||
vec3 result = vec3(0.0);
|
||||
switch (programChoice)
|
||||
{
|
||||
case 1: result = bloom_none(); break;
|
||||
case 2: result = bloom_old(); break;
|
||||
case 3: result = bloom_new(); break;
|
||||
default:
|
||||
result = bloom_none(); break;
|
||||
}
|
||||
// tone mapping
|
||||
result = vec3(1.0) - exp(-result * exposure);
|
||||
// also gamma correct while we're at it
|
||||
const float gamma = 2.2;
|
||||
result = pow(result, vec3(1.0 / gamma));
|
||||
FragColor = vec4(result, 1.0);
|
||||
}
|
||||
11
src/8.guest/2022/6.physically_based_bloom/6.bloom_final.vs
Normal file
11
src/8.guest/2022/6.physically_based_bloom/6.bloom_final.vs
Normal file
@@ -0,0 +1,11 @@
|
||||
#version 330 core
|
||||
layout (location = 0) in vec3 aPos;
|
||||
layout (location = 1) in vec2 aTexCoords;
|
||||
|
||||
out vec2 TexCoords;
|
||||
|
||||
void main()
|
||||
{
|
||||
TexCoords = aTexCoords;
|
||||
gl_Position = vec4(aPos, 1.0);
|
||||
}
|
||||
21
src/8.guest/2022/6.physically_based_bloom/6.light_box.fs
Normal file
21
src/8.guest/2022/6.physically_based_bloom/6.light_box.fs
Normal file
@@ -0,0 +1,21 @@
|
||||
#version 330 core
|
||||
layout (location = 0) out vec4 FragColor;
|
||||
layout (location = 1) out vec4 BrightColor;
|
||||
|
||||
in VS_OUT {
|
||||
vec3 FragPos;
|
||||
vec3 Normal;
|
||||
vec2 TexCoords;
|
||||
} fs_in;
|
||||
|
||||
uniform vec3 lightColor;
|
||||
|
||||
void main()
|
||||
{
|
||||
FragColor = vec4(lightColor, 1.0);
|
||||
float brightness = dot(FragColor.rgb, vec3(0.2126, 0.7152, 0.0722));
|
||||
if(brightness > 1.0)
|
||||
BrightColor = vec4(FragColor.rgb, 1.0);
|
||||
else
|
||||
BrightColor = vec4(0.0, 0.0, 0.0, 1.0);
|
||||
}
|
||||
114
src/8.guest/2022/6.physically_based_bloom/6.new_downsample.fs
Normal file
114
src/8.guest/2022/6.physically_based_bloom/6.new_downsample.fs
Normal file
@@ -0,0 +1,114 @@
|
||||
#version 330 core
|
||||
|
||||
// This shader performs downsampling on a texture,
|
||||
// as taken from Call Of Duty method, presented at ACM Siggraph 2014.
|
||||
// This particular method was customly designed to eliminate
|
||||
// "pulsating artifacts and temporal stability issues".
|
||||
|
||||
// Remember to add bilinear minification filter for this texture!
|
||||
// Remember to use a floating-point texture format (for HDR)!
|
||||
// Remember to use edge clamping for this texture!
|
||||
uniform sampler2D srcTexture;
|
||||
uniform vec2 srcResolution;
|
||||
|
||||
// which mip we are writing to, used for Karis average
|
||||
uniform int mipLevel = 1;
|
||||
|
||||
in vec2 texCoord;
|
||||
layout (location = 0) out vec3 downsample;
|
||||
|
||||
vec3 PowVec3(vec3 v, float p)
|
||||
{
|
||||
return vec3(pow(v.x, p), pow(v.y, p), pow(v.z, p));
|
||||
}
|
||||
|
||||
const float invGamma = 1.0 / 2.2;
|
||||
vec3 ToSRGB(vec3 v) { return PowVec3(v, invGamma); }
|
||||
|
||||
float sRGBToLuma(vec3 col)
|
||||
{
|
||||
//return dot(col, vec3(0.2126f, 0.7152f, 0.0722f));
|
||||
return dot(col, vec3(0.299f, 0.587f, 0.114f));
|
||||
}
|
||||
|
||||
float KarisAverage(vec3 col)
|
||||
{
|
||||
// Formula is 1 / (1 + luma)
|
||||
float luma = sRGBToLuma(ToSRGB(col)) * 0.25f;
|
||||
return 1.0f / (1.0f + luma);
|
||||
}
|
||||
|
||||
// NOTE: This is the readable version of this shader. It will be optimized!
|
||||
void main()
|
||||
{
|
||||
vec2 srcTexelSize = 1.0 / srcResolution;
|
||||
float x = srcTexelSize.x;
|
||||
float y = srcTexelSize.y;
|
||||
|
||||
// Take 13 samples around current texel:
|
||||
// a - b - c
|
||||
// - j - k -
|
||||
// d - e - f
|
||||
// - l - m -
|
||||
// g - h - i
|
||||
// === ('e' is the current texel) ===
|
||||
vec3 a = texture(srcTexture, vec2(texCoord.x - 2*x, texCoord.y + 2*y)).rgb;
|
||||
vec3 b = texture(srcTexture, vec2(texCoord.x, texCoord.y + 2*y)).rgb;
|
||||
vec3 c = texture(srcTexture, vec2(texCoord.x + 2*x, texCoord.y + 2*y)).rgb;
|
||||
|
||||
vec3 d = texture(srcTexture, vec2(texCoord.x - 2*x, texCoord.y)).rgb;
|
||||
vec3 e = texture(srcTexture, vec2(texCoord.x, texCoord.y)).rgb;
|
||||
vec3 f = texture(srcTexture, vec2(texCoord.x + 2*x, texCoord.y)).rgb;
|
||||
|
||||
vec3 g = texture(srcTexture, vec2(texCoord.x - 2*x, texCoord.y - 2*y)).rgb;
|
||||
vec3 h = texture(srcTexture, vec2(texCoord.x, texCoord.y - 2*y)).rgb;
|
||||
vec3 i = texture(srcTexture, vec2(texCoord.x + 2*x, texCoord.y - 2*y)).rgb;
|
||||
|
||||
vec3 j = texture(srcTexture, vec2(texCoord.x - x, texCoord.y + y)).rgb;
|
||||
vec3 k = texture(srcTexture, vec2(texCoord.x + x, texCoord.y + y)).rgb;
|
||||
vec3 l = texture(srcTexture, vec2(texCoord.x - x, texCoord.y - y)).rgb;
|
||||
vec3 m = texture(srcTexture, vec2(texCoord.x + x, texCoord.y - y)).rgb;
|
||||
|
||||
// Apply weighted distribution:
|
||||
// 0.5 + 0.125 + 0.125 + 0.125 + 0.125 = 1
|
||||
// a,b,d,e * 0.125
|
||||
// b,c,e,f * 0.125
|
||||
// d,e,g,h * 0.125
|
||||
// e,f,h,i * 0.125
|
||||
// j,k,l,m * 0.5
|
||||
// This shows 5 square areas that are being sampled. But some of them overlap,
|
||||
// so to have an energy preserving downsample we need to make some adjustments.
|
||||
// The weights are the distributed, so that the sum of j,k,l,m (e.g.)
|
||||
// contribute 0.5 to the final color output. The code below is written
|
||||
// to effectively yield this sum. We get:
|
||||
// 0.125*5 + 0.03125*4 + 0.0625*4 = 1
|
||||
|
||||
// Check if we need to perform Karis average on each block of 4 samples
|
||||
vec3 groups[5];
|
||||
switch (mipLevel)
|
||||
{
|
||||
case 0:
|
||||
// We are writing to mip 0, so we need to apply Karis average to each block
|
||||
// of 4 samples to prevent fireflies (very bright subpixels, leads to pulsating
|
||||
// artifacts).
|
||||
groups[0] = (a+b+d+e) * (0.125f/4.0f);
|
||||
groups[1] = (b+c+e+f) * (0.125f/4.0f);
|
||||
groups[2] = (d+e+g+h) * (0.125f/4.0f);
|
||||
groups[3] = (e+f+h+i) * (0.125f/4.0f);
|
||||
groups[4] = (j+k+l+m) * (0.5f/4.0f);
|
||||
groups[0] *= KarisAverage(groups[0]);
|
||||
groups[1] *= KarisAverage(groups[1]);
|
||||
groups[2] *= KarisAverage(groups[2]);
|
||||
groups[3] *= KarisAverage(groups[3]);
|
||||
groups[4] *= KarisAverage(groups[4]);
|
||||
downsample = groups[0]+groups[1]+groups[2]+groups[3]+groups[4];
|
||||
downsample = max(downsample, 0.0001f);
|
||||
break;
|
||||
default:
|
||||
downsample = e*0.125; // ok
|
||||
downsample += (a+c+g+i)*0.03125; // ok
|
||||
downsample += (b+d+f+h)*0.0625; // ok
|
||||
downsample += (j+k+l+m)*0.125; // ok
|
||||
break;
|
||||
}
|
||||
}
|
||||
@@ -0,0 +1,12 @@
|
||||
#version 330 core
|
||||
|
||||
layout (location = 0) in vec2 aPosition;
|
||||
layout (location = 1) in vec2 aTexCoord;
|
||||
|
||||
out vec2 texCoord;
|
||||
|
||||
void main()
|
||||
{
|
||||
gl_Position = vec4(aPosition.x, aPosition.y, 0.0, 1.0);
|
||||
texCoord = aTexCoord;
|
||||
}
|
||||
47
src/8.guest/2022/6.physically_based_bloom/6.new_upsample.fs
Normal file
47
src/8.guest/2022/6.physically_based_bloom/6.new_upsample.fs
Normal file
@@ -0,0 +1,47 @@
|
||||
#version 330 core
|
||||
|
||||
// This shader performs upsampling on a texture,
|
||||
// as taken from Call Of Duty method, presented at ACM Siggraph 2014.
|
||||
|
||||
// Remember to add bilinear minification filter for this texture!
|
||||
// Remember to use a floating-point texture format (for HDR)!
|
||||
// Remember to use edge clamping for this texture!
|
||||
uniform sampler2D srcTexture;
|
||||
uniform float filterRadius;
|
||||
|
||||
in vec2 texCoord;
|
||||
layout (location = 0) out vec3 upsample;
|
||||
|
||||
void main()
|
||||
{
|
||||
// The filter kernel is applied with a radius, specified in texture
|
||||
// coordinates, so that the radius will vary across mip resolutions.
|
||||
float x = filterRadius;
|
||||
float y = filterRadius;
|
||||
|
||||
// Take 9 samples around current texel:
|
||||
// a - b - c
|
||||
// d - e - f
|
||||
// g - h - i
|
||||
// === ('e' is the current texel) ===
|
||||
vec3 a = texture(srcTexture, vec2(texCoord.x - x, texCoord.y + y)).rgb;
|
||||
vec3 b = texture(srcTexture, vec2(texCoord.x, texCoord.y + y)).rgb;
|
||||
vec3 c = texture(srcTexture, vec2(texCoord.x + x, texCoord.y + y)).rgb;
|
||||
|
||||
vec3 d = texture(srcTexture, vec2(texCoord.x - x, texCoord.y)).rgb;
|
||||
vec3 e = texture(srcTexture, vec2(texCoord.x, texCoord.y)).rgb;
|
||||
vec3 f = texture(srcTexture, vec2(texCoord.x + x, texCoord.y)).rgb;
|
||||
|
||||
vec3 g = texture(srcTexture, vec2(texCoord.x - x, texCoord.y - y)).rgb;
|
||||
vec3 h = texture(srcTexture, vec2(texCoord.x, texCoord.y - y)).rgb;
|
||||
vec3 i = texture(srcTexture, vec2(texCoord.x + x, texCoord.y - y)).rgb;
|
||||
|
||||
// Apply weighted distribution, by using a 3x3 tent filter:
|
||||
// 1 | 1 2 1 |
|
||||
// -- * | 2 4 2 |
|
||||
// 16 | 1 2 1 |
|
||||
upsample = e*4.0;
|
||||
upsample += (b+d+f+h)*2.0;
|
||||
upsample += (a+c+g+i);
|
||||
upsample *= 1.0 / 16.0;
|
||||
}
|
||||
12
src/8.guest/2022/6.physically_based_bloom/6.new_upsample.vs
Normal file
12
src/8.guest/2022/6.physically_based_bloom/6.new_upsample.vs
Normal file
@@ -0,0 +1,12 @@
|
||||
#version 330 core
|
||||
|
||||
layout (location = 0) in vec2 aPosition;
|
||||
layout (location = 1) in vec2 aTexCoord;
|
||||
|
||||
out vec2 texCoord;
|
||||
|
||||
void main()
|
||||
{
|
||||
gl_Position = vec4(aPosition.x, aPosition.y, 0.0, 1.0);
|
||||
texCoord = aTexCoord;
|
||||
}
|
||||
32
src/8.guest/2022/6.physically_based_bloom/6.old_blur.fs
Normal file
32
src/8.guest/2022/6.physically_based_bloom/6.old_blur.fs
Normal file
@@ -0,0 +1,32 @@
|
||||
#version 330 core
|
||||
out vec4 FragColor;
|
||||
|
||||
in vec2 TexCoords;
|
||||
|
||||
uniform sampler2D image;
|
||||
|
||||
uniform bool horizontal;
|
||||
uniform float weight[5] = float[] (0.2270270270, 0.1945945946, 0.1216216216, 0.0540540541, 0.0162162162);
|
||||
|
||||
void main()
|
||||
{
|
||||
vec2 tex_offset = 1.0 / textureSize(image, 0); // gets size of single texel
|
||||
vec3 result = texture(image, TexCoords).rgb * weight[0];
|
||||
if(horizontal)
|
||||
{
|
||||
for(int i = 1; i < 5; ++i)
|
||||
{
|
||||
result += texture(image, TexCoords + vec2(tex_offset.x * i, 0.0)).rgb * weight[i];
|
||||
result += texture(image, TexCoords - vec2(tex_offset.x * i, 0.0)).rgb * weight[i];
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for(int i = 1; i < 5; ++i)
|
||||
{
|
||||
result += texture(image, TexCoords + vec2(0.0, tex_offset.y * i)).rgb * weight[i];
|
||||
result += texture(image, TexCoords - vec2(0.0, tex_offset.y * i)).rgb * weight[i];
|
||||
}
|
||||
}
|
||||
FragColor = vec4(result, 1.0);
|
||||
}
|
||||
11
src/8.guest/2022/6.physically_based_bloom/6.old_blur.vs
Normal file
11
src/8.guest/2022/6.physically_based_bloom/6.old_blur.vs
Normal file
@@ -0,0 +1,11 @@
|
||||
#version 330 core
|
||||
layout (location = 0) in vec3 aPos;
|
||||
layout (location = 1) in vec2 aTexCoords;
|
||||
|
||||
out vec2 TexCoords;
|
||||
|
||||
void main()
|
||||
{
|
||||
TexCoords = aTexCoords;
|
||||
gl_Position = vec4(aPos, 1.0);
|
||||
}
|
||||
@@ -0,0 +1,860 @@
|
||||
#include <glad/glad.h>
|
||||
#include <GLFW/glfw3.h>
|
||||
#include <stb_image.h>
|
||||
|
||||
#include <glm/glm.hpp>
|
||||
#include <glm/gtc/matrix_transform.hpp>
|
||||
#include <glm/gtc/type_ptr.hpp>
|
||||
|
||||
#include <learnopengl/filesystem.h>
|
||||
#include <learnopengl/shader.h>
|
||||
#include <learnopengl/camera.h>
|
||||
#include <learnopengl/model.h>
|
||||
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
|
||||
void framebuffer_size_callback(GLFWwindow* window, int width, int height);
|
||||
void mouse_callback(GLFWwindow* window, double xpos, double ypos);
|
||||
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);
|
||||
void processInput(GLFWwindow *window);
|
||||
unsigned int loadTexture(const char *path, bool gammaCorrection);
|
||||
void renderQuad();
|
||||
void renderCube();
|
||||
|
||||
// settings
|
||||
const unsigned int SCR_WIDTH = 800;
|
||||
const unsigned int SCR_HEIGHT = 600;
|
||||
bool bloom = true;
|
||||
float exposure = 1.0f;
|
||||
int programChoice = 1;
|
||||
float bloomFilterRadius = 0.005f;
|
||||
|
||||
// camera
|
||||
Camera camera(glm::vec3(0.0f, 0.0f, 5.0f));
|
||||
float lastX = (float)SCR_WIDTH / 2.0;
|
||||
float lastY = (float)SCR_HEIGHT / 2.0;
|
||||
bool firstMouse = true;
|
||||
|
||||
// timing
|
||||
float deltaTime = 0.0f;
|
||||
float lastFrame = 0.0f;
|
||||
|
||||
// bloom stuff
|
||||
struct bloomMip
|
||||
{
|
||||
glm::vec2 size;
|
||||
glm::ivec2 intSize;
|
||||
unsigned int texture;
|
||||
};
|
||||
|
||||
class bloomFBO
|
||||
{
|
||||
public:
|
||||
bloomFBO();
|
||||
~bloomFBO();
|
||||
bool Init(unsigned int windowWidth, unsigned int windowHeight, unsigned int mipChainLength);
|
||||
void Destroy();
|
||||
void BindForWriting();
|
||||
const std::vector<bloomMip>& MipChain() const;
|
||||
|
||||
private:
|
||||
bool mInit;
|
||||
unsigned int mFBO;
|
||||
std::vector<bloomMip> mMipChain;
|
||||
};
|
||||
|
||||
bloomFBO::bloomFBO() : mInit(false) {}
|
||||
bloomFBO::~bloomFBO() {}
|
||||
|
||||
bool bloomFBO::Init(unsigned int windowWidth, unsigned int windowHeight, unsigned int mipChainLength)
|
||||
{
|
||||
if (mInit) return true;
|
||||
|
||||
glGenFramebuffers(1, &mFBO);
|
||||
glBindFramebuffer(GL_FRAMEBUFFER, mFBO);
|
||||
|
||||
glm::vec2 mipSize((float)windowWidth, (float)windowHeight);
|
||||
glm::ivec2 mipIntSize((int)windowWidth, (int)windowHeight);
|
||||
// Safety check
|
||||
if (windowWidth > (unsigned int)INT_MAX || windowHeight > (unsigned int)INT_MAX) {
|
||||
std::cerr << "Window size conversion overflow - cannot build bloom FBO!" << std::endl;
|
||||
return false;
|
||||
}
|
||||
|
||||
for (GLuint i = 0; i < mipChainLength; i++)
|
||||
{
|
||||
bloomMip mip;
|
||||
|
||||
mipSize *= 0.5f;
|
||||
mipIntSize /= 2;
|
||||
mip.size = mipSize;
|
||||
mip.intSize = mipIntSize;
|
||||
|
||||
glGenTextures(1, &mip.texture);
|
||||
glBindTexture(GL_TEXTURE_2D, mip.texture);
|
||||
// we are downscaling an HDR color buffer, so we need a float texture format
|
||||
glTexImage2D(GL_TEXTURE_2D, 0, GL_R11F_G11F_B10F,
|
||||
(int)mipSize.x, (int)mipSize.y,
|
||||
0, GL_RGB, GL_FLOAT, nullptr);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
|
||||
|
||||
std::cout << "Created bloom mip " << mipIntSize.x << 'x' << mipIntSize.y << std::endl;
|
||||
mMipChain.emplace_back(mip);
|
||||
}
|
||||
|
||||
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
|
||||
GL_TEXTURE_2D, mMipChain[0].texture, 0);
|
||||
|
||||
// setup attachments
|
||||
unsigned int attachments[1] = { GL_COLOR_ATTACHMENT0 };
|
||||
glDrawBuffers(1, attachments);
|
||||
|
||||
// check completion status
|
||||
int status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
|
||||
if (status != GL_FRAMEBUFFER_COMPLETE)
|
||||
{
|
||||
printf("gbuffer FBO error, status: 0x%x\n", status);
|
||||
glBindFramebuffer(GL_FRAMEBUFFER, 0);
|
||||
return false;
|
||||
}
|
||||
|
||||
glBindFramebuffer(GL_FRAMEBUFFER, 0);
|
||||
mInit = true;
|
||||
return true;
|
||||
}
|
||||
|
||||
void bloomFBO::Destroy()
|
||||
{
|
||||
for (int i = 0; i < (int)mMipChain.size(); i++) {
|
||||
glDeleteTextures(1, &mMipChain[i].texture);
|
||||
mMipChain[i].texture = 0;
|
||||
}
|
||||
glDeleteFramebuffers(1, &mFBO);
|
||||
mFBO = 0;
|
||||
mInit = false;
|
||||
}
|
||||
|
||||
void bloomFBO::BindForWriting()
|
||||
{
|
||||
glBindFramebuffer(GL_FRAMEBUFFER, mFBO);
|
||||
}
|
||||
|
||||
const std::vector<bloomMip>& bloomFBO::MipChain() const
|
||||
{
|
||||
return mMipChain;
|
||||
}
|
||||
|
||||
|
||||
|
||||
class BloomRenderer
|
||||
{
|
||||
public:
|
||||
BloomRenderer();
|
||||
~BloomRenderer();
|
||||
bool Init(unsigned int windowWidth, unsigned int windowHeight);
|
||||
void Destroy();
|
||||
void RenderBloomTexture(unsigned int srcTexture, float filterRadius);
|
||||
unsigned int BloomTexture();
|
||||
unsigned int BloomMip_i(int index);
|
||||
|
||||
private:
|
||||
void RenderDownsamples(unsigned int srcTexture);
|
||||
void RenderUpsamples(float filterRadius);
|
||||
|
||||
bool mInit;
|
||||
bloomFBO mFBO;
|
||||
glm::ivec2 mSrcViewportSize;
|
||||
glm::vec2 mSrcViewportSizeFloat;
|
||||
Shader* mDownsampleShader;
|
||||
Shader* mUpsampleShader;
|
||||
|
||||
bool mKarisAverageOnDownsample = true;
|
||||
};
|
||||
|
||||
BloomRenderer::BloomRenderer() : mInit(false) {}
|
||||
BloomRenderer::~BloomRenderer() {}
|
||||
|
||||
bool BloomRenderer::Init(unsigned int windowWidth, unsigned int windowHeight)
|
||||
{
|
||||
if (mInit) return true;
|
||||
mSrcViewportSize = glm::ivec2(windowWidth, windowHeight);
|
||||
mSrcViewportSizeFloat = glm::vec2((float)windowWidth, (float)windowHeight);
|
||||
|
||||
// Framebuffer
|
||||
const unsigned int num_bloom_mips = 6; // TODO: Play around with this value
|
||||
bool status = mFBO.Init(windowWidth, windowHeight, num_bloom_mips);
|
||||
if (!status) {
|
||||
std::cerr << "Failed to initialize bloom FBO - cannot create bloom renderer!\n";
|
||||
return false;
|
||||
}
|
||||
|
||||
// Shaders
|
||||
mDownsampleShader = new Shader("6.new_downsample.vs", "6.new_downsample.fs");
|
||||
mUpsampleShader = new Shader("6.new_upsample.vs", "6.new_upsample.fs");
|
||||
|
||||
// Downsample
|
||||
mDownsampleShader->use();
|
||||
mDownsampleShader->setInt("srcTexture", 0);
|
||||
glUseProgram(0);
|
||||
|
||||
// Upsample
|
||||
mUpsampleShader->use();
|
||||
mUpsampleShader->setInt("srcTexture", 0);
|
||||
glUseProgram(0);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void BloomRenderer::Destroy()
|
||||
{
|
||||
mFBO.Destroy();
|
||||
delete mDownsampleShader;
|
||||
delete mUpsampleShader;
|
||||
}
|
||||
|
||||
void BloomRenderer::RenderDownsamples(unsigned int srcTexture)
|
||||
{
|
||||
const std::vector<bloomMip>& mipChain = mFBO.MipChain();
|
||||
|
||||
mDownsampleShader->use();
|
||||
mDownsampleShader->setVec2("srcResolution", mSrcViewportSizeFloat);
|
||||
if (mKarisAverageOnDownsample) {
|
||||
mDownsampleShader->setInt("mipLevel", 0);
|
||||
}
|
||||
|
||||
// Bind srcTexture (HDR color buffer) as initial texture input
|
||||
glActiveTexture(GL_TEXTURE0);
|
||||
glBindTexture(GL_TEXTURE_2D, srcTexture);
|
||||
|
||||
// Progressively downsample through the mip chain
|
||||
for (int i = 0; i < (int)mipChain.size(); i++)
|
||||
{
|
||||
const bloomMip& mip = mipChain[i];
|
||||
glViewport(0, 0, mip.size.x, mip.size.y);
|
||||
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
|
||||
GL_TEXTURE_2D, mip.texture, 0);
|
||||
|
||||
// Render screen-filled quad of resolution of current mip
|
||||
renderQuad();
|
||||
|
||||
// Set current mip resolution as srcResolution for next iteration
|
||||
mDownsampleShader->setVec2("srcResolution", mip.size);
|
||||
// Set current mip as texture input for next iteration
|
||||
glBindTexture(GL_TEXTURE_2D, mip.texture);
|
||||
// Disable Karis average for consequent downsamples
|
||||
if (i == 0) { mDownsampleShader->setInt("mipLevel", 1); }
|
||||
}
|
||||
|
||||
glUseProgram(0);
|
||||
}
|
||||
|
||||
void BloomRenderer::RenderUpsamples(float filterRadius)
|
||||
{
|
||||
const std::vector<bloomMip>& mipChain = mFBO.MipChain();
|
||||
|
||||
mUpsampleShader->use();
|
||||
mUpsampleShader->setFloat("filterRadius", filterRadius);
|
||||
|
||||
// Enable additive blending
|
||||
glEnable(GL_BLEND);
|
||||
glBlendFunc(GL_ONE, GL_ONE);
|
||||
glBlendEquation(GL_FUNC_ADD);
|
||||
|
||||
for (int i = (int)mipChain.size() - 1; i > 0; i--)
|
||||
{
|
||||
const bloomMip& mip = mipChain[i];
|
||||
const bloomMip& nextMip = mipChain[i-1];
|
||||
|
||||
// Bind viewport and texture from where to read
|
||||
glActiveTexture(GL_TEXTURE0);
|
||||
glBindTexture(GL_TEXTURE_2D, mip.texture);
|
||||
|
||||
// Set framebuffer render target (we write to this texture)
|
||||
glViewport(0, 0, nextMip.size.x, nextMip.size.y);
|
||||
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
|
||||
GL_TEXTURE_2D, nextMip.texture, 0);
|
||||
|
||||
// Render screen-filled quad of resolution of current mip
|
||||
renderQuad();
|
||||
}
|
||||
|
||||
// Disable additive blending
|
||||
//glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
|
||||
glDisable(GL_BLEND);
|
||||
|
||||
glUseProgram(0);
|
||||
}
|
||||
|
||||
void BloomRenderer::RenderBloomTexture(unsigned int srcTexture, float filterRadius)
|
||||
{
|
||||
mFBO.BindForWriting();
|
||||
|
||||
this->RenderDownsamples(srcTexture);
|
||||
this->RenderUpsamples(filterRadius);
|
||||
|
||||
glBindFramebuffer(GL_FRAMEBUFFER, 0);
|
||||
// Restore viewport
|
||||
glViewport(0, 0, mSrcViewportSize.x, mSrcViewportSize.y);
|
||||
}
|
||||
|
||||
GLuint BloomRenderer::BloomTexture()
|
||||
{
|
||||
return mFBO.MipChain()[0].texture;
|
||||
}
|
||||
|
||||
GLuint BloomRenderer::BloomMip_i(int index)
|
||||
{
|
||||
const std::vector<bloomMip>& mipChain = mFBO.MipChain();
|
||||
int size = (int)mipChain.size();
|
||||
return mipChain[(index > size-1) ? size-1 : (index < 0) ? 0 : index].texture;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
int main()
|
||||
{
|
||||
// glfw: initialize and configure
|
||||
// ------------------------------
|
||||
glfwInit();
|
||||
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
|
||||
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
|
||||
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
|
||||
|
||||
#ifdef __APPLE__
|
||||
glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
|
||||
#endif
|
||||
|
||||
// glfw window creation
|
||||
// --------------------
|
||||
GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", NULL, NULL);
|
||||
if (window == NULL)
|
||||
{
|
||||
std::cout << "Failed to create GLFW window" << std::endl;
|
||||
glfwTerminate();
|
||||
return -1;
|
||||
}
|
||||
glfwMakeContextCurrent(window);
|
||||
glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
|
||||
glfwSetCursorPosCallback(window, mouse_callback);
|
||||
glfwSetScrollCallback(window, scroll_callback);
|
||||
|
||||
// tell GLFW to capture our mouse
|
||||
glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);
|
||||
|
||||
// glad: load all OpenGL function pointers
|
||||
// ---------------------------------------
|
||||
if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
|
||||
{
|
||||
std::cout << "Failed to initialize GLAD" << std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
// configure global opengl state
|
||||
// -----------------------------
|
||||
glEnable(GL_DEPTH_TEST);
|
||||
|
||||
// build and compile shaders
|
||||
// -------------------------
|
||||
Shader shader("6.bloom.vs", "6.bloom.fs");
|
||||
Shader shaderLight("6.bloom.vs", "6.light_box.fs");
|
||||
Shader shaderBlur("6.old_blur.vs", "6.old_blur.fs");
|
||||
Shader shaderBloomFinal("6.bloom_final.vs", "6.bloom_final.fs");
|
||||
|
||||
// load textures
|
||||
// -------------
|
||||
unsigned int woodTexture = loadTexture(FileSystem::getPath("resources/textures/wood.png").c_str(), true); // note that we're loading the texture as an SRGB texture
|
||||
unsigned int containerTexture = loadTexture(FileSystem::getPath("resources/textures/container2.png").c_str(), true); // note that we're loading the texture as an SRGB texture
|
||||
|
||||
// configure (floating point) framebuffers
|
||||
// ---------------------------------------
|
||||
unsigned int hdrFBO;
|
||||
glGenFramebuffers(1, &hdrFBO);
|
||||
glBindFramebuffer(GL_FRAMEBUFFER, hdrFBO);
|
||||
// create 2 floating point color buffers (1 for normal rendering, other for brightness threshold values)
|
||||
unsigned int colorBuffers[2];
|
||||
glGenTextures(2, colorBuffers);
|
||||
for (unsigned int i = 0; i < 2; i++)
|
||||
{
|
||||
glBindTexture(GL_TEXTURE_2D, colorBuffers[i]);
|
||||
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA16F, SCR_WIDTH, SCR_HEIGHT, 0, GL_RGBA, GL_FLOAT, NULL);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); // we clamp to the edge as the blur filter would otherwise sample repeated texture values!
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
|
||||
// attach texture to framebuffer
|
||||
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + i, GL_TEXTURE_2D, colorBuffers[i], 0);
|
||||
}
|
||||
// create and attach depth buffer (renderbuffer)
|
||||
unsigned int rboDepth;
|
||||
glGenRenderbuffers(1, &rboDepth);
|
||||
glBindRenderbuffer(GL_RENDERBUFFER, rboDepth);
|
||||
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT, SCR_WIDTH, SCR_HEIGHT);
|
||||
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, rboDepth);
|
||||
// tell OpenGL which color attachments we'll use (of this framebuffer) for rendering
|
||||
unsigned int attachments[2] = { GL_COLOR_ATTACHMENT0, GL_COLOR_ATTACHMENT1 };
|
||||
glDrawBuffers(2, attachments);
|
||||
// finally check if framebuffer is complete
|
||||
if (glCheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE)
|
||||
std::cout << "Framebuffer not complete!" << std::endl;
|
||||
glBindFramebuffer(GL_FRAMEBUFFER, 0);
|
||||
|
||||
// ping-pong-framebuffer for blurring
|
||||
unsigned int pingpongFBO[2];
|
||||
unsigned int pingpongColorbuffers[2];
|
||||
glGenFramebuffers(2, pingpongFBO);
|
||||
glGenTextures(2, pingpongColorbuffers);
|
||||
for (unsigned int i = 0; i < 2; i++)
|
||||
{
|
||||
glBindFramebuffer(GL_FRAMEBUFFER, pingpongFBO[i]);
|
||||
glBindTexture(GL_TEXTURE_2D, pingpongColorbuffers[i]);
|
||||
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA16F, SCR_WIDTH, SCR_HEIGHT, 0, GL_RGBA, GL_FLOAT, NULL);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); // we clamp to the edge as the blur filter would otherwise sample repeated texture values!
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
|
||||
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, pingpongColorbuffers[i], 0);
|
||||
// also check if framebuffers are complete (no need for depth buffer)
|
||||
if (glCheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE)
|
||||
std::cout << "Framebuffer not complete!" << std::endl;
|
||||
}
|
||||
|
||||
// lighting info
|
||||
// -------------
|
||||
// positions
|
||||
std::vector<glm::vec3> lightPositions;
|
||||
lightPositions.push_back(glm::vec3( 0.0f, 0.5f, 1.5f));
|
||||
lightPositions.push_back(glm::vec3(-4.0f, 0.5f, -3.0f));
|
||||
lightPositions.push_back(glm::vec3( 3.0f, 0.5f, 1.0f));
|
||||
lightPositions.push_back(glm::vec3(-.8f, 2.4f, -1.0f));
|
||||
// colors
|
||||
std::vector<glm::vec3> lightColors;
|
||||
lightColors.push_back(glm::vec3(5.0f, 5.0f, 5.0f));
|
||||
lightColors.push_back(glm::vec3(10.0f, 0.0f, 0.0f));
|
||||
lightColors.push_back(glm::vec3(0.0f, 0.0f, 15.0f));
|
||||
lightColors.push_back(glm::vec3(0.0f, 5.0f, 0.0f));
|
||||
|
||||
|
||||
// shader configuration
|
||||
// --------------------
|
||||
shader.use();
|
||||
shader.setInt("diffuseTexture", 0);
|
||||
shaderBlur.use();
|
||||
shaderBlur.setInt("image", 0);
|
||||
shaderBloomFinal.use();
|
||||
shaderBloomFinal.setInt("scene", 0);
|
||||
shaderBloomFinal.setInt("bloomBlur", 1);
|
||||
|
||||
// bloom renderer
|
||||
// --------------
|
||||
BloomRenderer bloomRenderer;
|
||||
bloomRenderer.Init(SCR_WIDTH, SCR_HEIGHT);
|
||||
|
||||
// render loop
|
||||
// -----------
|
||||
while (!glfwWindowShouldClose(window))
|
||||
{
|
||||
// per-frame time logic
|
||||
// --------------------
|
||||
float currentFrame = static_cast<float>(glfwGetTime());
|
||||
deltaTime = currentFrame - lastFrame;
|
||||
lastFrame = currentFrame;
|
||||
|
||||
// input
|
||||
// -----
|
||||
processInput(window);
|
||||
|
||||
// render
|
||||
// ------
|
||||
glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
|
||||
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
|
||||
|
||||
// 1. render scene into floating point framebuffer
|
||||
// -----------------------------------------------
|
||||
glBindFramebuffer(GL_FRAMEBUFFER, hdrFBO);
|
||||
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
|
||||
glm::mat4 projection = glm::perspective(glm::radians(camera.Zoom), (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f);
|
||||
glm::mat4 view = camera.GetViewMatrix();
|
||||
glm::mat4 model = glm::mat4(1.0f);
|
||||
shader.use();
|
||||
shader.setMat4("projection", projection);
|
||||
shader.setMat4("view", view);
|
||||
glActiveTexture(GL_TEXTURE0);
|
||||
glBindTexture(GL_TEXTURE_2D, woodTexture);
|
||||
// set lighting uniforms
|
||||
for (unsigned int i = 0; i < lightPositions.size(); i++)
|
||||
{
|
||||
shader.setVec3("lights[" + std::to_string(i) + "].Position", lightPositions[i]);
|
||||
shader.setVec3("lights[" + std::to_string(i) + "].Color", lightColors[i]);
|
||||
}
|
||||
shader.setVec3("viewPos", camera.Position);
|
||||
// create one large cube that acts as the floor
|
||||
model = glm::mat4(1.0f);
|
||||
model = glm::translate(model, glm::vec3(0.0f, -1.0f, 0.0));
|
||||
model = glm::scale(model, glm::vec3(12.5f, 0.5f, 12.5f));
|
||||
shader.setMat4("model", model);
|
||||
renderCube();
|
||||
// then create multiple cubes as the scenery
|
||||
glBindTexture(GL_TEXTURE_2D, containerTexture);
|
||||
model = glm::mat4(1.0f);
|
||||
model = glm::translate(model, glm::vec3(0.0f, 1.5f, 0.0));
|
||||
model = glm::scale(model, glm::vec3(0.5f));
|
||||
shader.setMat4("model", model);
|
||||
renderCube();
|
||||
|
||||
model = glm::mat4(1.0f);
|
||||
model = glm::translate(model, glm::vec3(2.0f, 0.0f, 1.0));
|
||||
model = glm::scale(model, glm::vec3(0.5f));
|
||||
shader.setMat4("model", model);
|
||||
renderCube();
|
||||
|
||||
model = glm::mat4(1.0f);
|
||||
model = glm::translate(model, glm::vec3(-1.0f, -1.0f, 2.0));
|
||||
model = glm::rotate(model, glm::radians(60.0f), glm::normalize(glm::vec3(1.0, 0.0, 1.0)));
|
||||
shader.setMat4("model", model);
|
||||
renderCube();
|
||||
|
||||
model = glm::mat4(1.0f);
|
||||
model = glm::translate(model, glm::vec3(0.0f, 2.7f, 4.0));
|
||||
model = glm::rotate(model, glm::radians(23.0f), glm::normalize(glm::vec3(1.0, 0.0, 1.0)));
|
||||
model = glm::scale(model, glm::vec3(1.25));
|
||||
shader.setMat4("model", model);
|
||||
renderCube();
|
||||
|
||||
model = glm::mat4(1.0f);
|
||||
model = glm::translate(model, glm::vec3(-2.0f, 1.0f, -3.0));
|
||||
model = glm::rotate(model, glm::radians(124.0f), glm::normalize(glm::vec3(1.0, 0.0, 1.0)));
|
||||
shader.setMat4("model", model);
|
||||
renderCube();
|
||||
|
||||
model = glm::mat4(1.0f);
|
||||
model = glm::translate(model, glm::vec3(-3.0f, 0.0f, 0.0));
|
||||
model = glm::scale(model, glm::vec3(0.5f));
|
||||
shader.setMat4("model", model);
|
||||
renderCube();
|
||||
|
||||
// finally show all the light sources as bright cubes
|
||||
shaderLight.use();
|
||||
shaderLight.setMat4("projection", projection);
|
||||
shaderLight.setMat4("view", view);
|
||||
|
||||
for (unsigned int i = 0; i < lightPositions.size(); i++)
|
||||
{
|
||||
model = glm::mat4(1.0f);
|
||||
model = glm::translate(model, glm::vec3(lightPositions[i]));
|
||||
model = glm::scale(model, glm::vec3(0.25f));
|
||||
shaderLight.setMat4("model", model);
|
||||
shaderLight.setVec3("lightColor", lightColors[i]);
|
||||
renderCube();
|
||||
}
|
||||
glBindFramebuffer(GL_FRAMEBUFFER, 0);
|
||||
|
||||
if (programChoice < 1 || programChoice > 3) { programChoice = 1; }
|
||||
bloom = (programChoice == 1) ? false : true;
|
||||
bool horizontal = true;
|
||||
|
||||
// 2.A) bloom is disabled
|
||||
// ----------------------
|
||||
if (programChoice == 1)
|
||||
{
|
||||
|
||||
}
|
||||
|
||||
// 2.B) blur bright fragments with two-pass Gaussian Blur
|
||||
// ------------------------------------------------------
|
||||
else if (programChoice == 2)
|
||||
{
|
||||
bool first_iteration = true;
|
||||
unsigned int amount = 10;
|
||||
shaderBlur.use();
|
||||
for (unsigned int i = 0; i < amount; i++)
|
||||
{
|
||||
glBindFramebuffer(GL_FRAMEBUFFER, pingpongFBO[horizontal]);
|
||||
shaderBlur.setInt("horizontal", horizontal);
|
||||
glBindTexture(GL_TEXTURE_2D, first_iteration ? colorBuffers[1] : pingpongColorbuffers[!horizontal]); // bind texture of other framebuffer (or scene if first iteration)
|
||||
renderQuad();
|
||||
horizontal = !horizontal;
|
||||
if (first_iteration)
|
||||
first_iteration = false;
|
||||
}
|
||||
glBindFramebuffer(GL_FRAMEBUFFER, 0);
|
||||
}
|
||||
|
||||
// 2.C) use unthresholded bloom with progressive downsample/upsampling
|
||||
// -------------------------------------------------------------------
|
||||
else if (programChoice == 3)
|
||||
{
|
||||
bloomRenderer.RenderBloomTexture(colorBuffers[1], bloomFilterRadius);
|
||||
}
|
||||
|
||||
// 3. now render floating point color buffer to 2D quad and tonemap HDR colors to default framebuffer's (clamped) color range
|
||||
// --------------------------------------------------------------------------------------------------------------------------
|
||||
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
|
||||
shaderBloomFinal.use();
|
||||
glActiveTexture(GL_TEXTURE0);
|
||||
glBindTexture(GL_TEXTURE_2D, colorBuffers[0]);
|
||||
glActiveTexture(GL_TEXTURE1);
|
||||
if (programChoice == 1) {
|
||||
glBindTexture(GL_TEXTURE_2D, 0); // trick to bind invalid texture "0", we don't care either way!
|
||||
}
|
||||
if (programChoice == 2) {
|
||||
glBindTexture(GL_TEXTURE_2D, pingpongColorbuffers[!horizontal]);
|
||||
}
|
||||
else if (programChoice == 3) {
|
||||
glBindTexture(GL_TEXTURE_2D, bloomRenderer.BloomTexture());
|
||||
}
|
||||
shaderBloomFinal.setInt("programChoice", programChoice);
|
||||
shaderBloomFinal.setFloat("exposure", exposure);
|
||||
renderQuad();
|
||||
|
||||
//std::cout << "bloom: " << (bloom ? "on" : "off") << "| exposure: " << exposure << std::endl;
|
||||
|
||||
// glfw: swap buffers and poll IO events (keys pressed/released, mouse moved etc.)
|
||||
// -------------------------------------------------------------------------------
|
||||
glfwSwapBuffers(window);
|
||||
glfwPollEvents();
|
||||
}
|
||||
|
||||
bloomRenderer.Destroy();
|
||||
glfwTerminate();
|
||||
return 0;
|
||||
}
|
||||
|
||||
// renderCube() renders a 1x1 3D cube in NDC.
|
||||
// -------------------------------------------------
|
||||
unsigned int cubeVAO = 0;
|
||||
unsigned int cubeVBO = 0;
|
||||
void renderCube()
|
||||
{
|
||||
// initialize (if necessary)
|
||||
if (cubeVAO == 0)
|
||||
{
|
||||
float vertices[] = {
|
||||
// back face
|
||||
-1.0f, -1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, // bottom-left
|
||||
1.0f, 1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f, // top-right
|
||||
1.0f, -1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 1.0f, 0.0f, // bottom-right
|
||||
1.0f, 1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f, // top-right
|
||||
-1.0f, -1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, // bottom-left
|
||||
-1.0f, 1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 1.0f, // top-left
|
||||
// front face
|
||||
-1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, // bottom-left
|
||||
1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, // bottom-right
|
||||
1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, // top-right
|
||||
1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, // top-right
|
||||
-1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, // top-left
|
||||
-1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, // bottom-left
|
||||
// left face
|
||||
-1.0f, 1.0f, 1.0f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-right
|
||||
-1.0f, 1.0f, -1.0f, -1.0f, 0.0f, 0.0f, 1.0f, 1.0f, // top-left
|
||||
-1.0f, -1.0f, -1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-left
|
||||
-1.0f, -1.0f, -1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-left
|
||||
-1.0f, -1.0f, 1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 0.0f, // bottom-right
|
||||
-1.0f, 1.0f, 1.0f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-right
|
||||
// right face
|
||||
1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-left
|
||||
1.0f, -1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-right
|
||||
1.0f, 1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, // top-right
|
||||
1.0f, -1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-right
|
||||
1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-left
|
||||
1.0f, -1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, // bottom-left
|
||||
// bottom face
|
||||
-1.0f, -1.0f, -1.0f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f, // top-right
|
||||
1.0f, -1.0f, -1.0f, 0.0f, -1.0f, 0.0f, 1.0f, 1.0f, // top-left
|
||||
1.0f, -1.0f, 1.0f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f, // bottom-left
|
||||
1.0f, -1.0f, 1.0f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f, // bottom-left
|
||||
-1.0f, -1.0f, 1.0f, 0.0f, -1.0f, 0.0f, 0.0f, 0.0f, // bottom-right
|
||||
-1.0f, -1.0f, -1.0f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f, // top-right
|
||||
// top face
|
||||
-1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, // top-left
|
||||
1.0f, 1.0f , 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, // bottom-right
|
||||
1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, // top-right
|
||||
1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, // bottom-right
|
||||
-1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, // top-left
|
||||
-1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f // bottom-left
|
||||
};
|
||||
glGenVertexArrays(1, &cubeVAO);
|
||||
glGenBuffers(1, &cubeVBO);
|
||||
// fill buffer
|
||||
glBindBuffer(GL_ARRAY_BUFFER, cubeVBO);
|
||||
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
|
||||
// link vertex attributes
|
||||
glBindVertexArray(cubeVAO);
|
||||
glEnableVertexAttribArray(0);
|
||||
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)0);
|
||||
glEnableVertexAttribArray(1);
|
||||
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)(3 * sizeof(float)));
|
||||
glEnableVertexAttribArray(2);
|
||||
glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)(6 * sizeof(float)));
|
||||
glBindBuffer(GL_ARRAY_BUFFER, 0);
|
||||
glBindVertexArray(0);
|
||||
}
|
||||
// render Cube
|
||||
glBindVertexArray(cubeVAO);
|
||||
glDrawArrays(GL_TRIANGLES, 0, 36);
|
||||
glBindVertexArray(0);
|
||||
}
|
||||
|
||||
// renderQuad() renders a 1x1 XY quad in NDC
|
||||
// -----------------------------------------
|
||||
unsigned int quadVAO = 0;
|
||||
unsigned int quadVBO;
|
||||
void renderQuad()
|
||||
{
|
||||
if (quadVAO == 0)
|
||||
{
|
||||
float quadVertices[] = {
|
||||
// positions // texture Coords
|
||||
-1.0f, 1.0f, 0.0f, 0.0f, 1.0f,
|
||||
-1.0f, -1.0f, 0.0f, 0.0f, 0.0f,
|
||||
1.0f, 1.0f, 0.0f, 1.0f, 1.0f,
|
||||
1.0f, -1.0f, 0.0f, 1.0f, 0.0f,
|
||||
};
|
||||
// setup plane VAO
|
||||
glGenVertexArrays(1, &quadVAO);
|
||||
glGenBuffers(1, &quadVBO);
|
||||
glBindVertexArray(quadVAO);
|
||||
glBindBuffer(GL_ARRAY_BUFFER, quadVBO);
|
||||
glBufferData(GL_ARRAY_BUFFER, sizeof(quadVertices), &quadVertices, GL_STATIC_DRAW);
|
||||
glEnableVertexAttribArray(0);
|
||||
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (void*)0);
|
||||
glEnableVertexAttribArray(1);
|
||||
glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (void*)(3 * sizeof(float)));
|
||||
}
|
||||
glBindVertexArray(quadVAO);
|
||||
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
|
||||
glBindVertexArray(0);
|
||||
}
|
||||
|
||||
// process all input: query GLFW whether relevant keys are pressed/released this frame and react accordingly
|
||||
// ---------------------------------------------------------------------------------------------------------
|
||||
void processInput(GLFWwindow *window)
|
||||
{
|
||||
if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
|
||||
glfwSetWindowShouldClose(window, true);
|
||||
|
||||
if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS)
|
||||
camera.ProcessKeyboard(FORWARD, deltaTime);
|
||||
if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)
|
||||
camera.ProcessKeyboard(BACKWARD, deltaTime);
|
||||
if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS)
|
||||
camera.ProcessKeyboard(LEFT, deltaTime);
|
||||
if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS)
|
||||
camera.ProcessKeyboard(RIGHT, deltaTime);
|
||||
|
||||
if (glfwGetKey(window, GLFW_KEY_Q) == GLFW_PRESS)
|
||||
{
|
||||
if (exposure > 0.0f)
|
||||
exposure -= 0.001f;
|
||||
else
|
||||
exposure = 0.0f;
|
||||
}
|
||||
else if (glfwGetKey(window, GLFW_KEY_E) == GLFW_PRESS)
|
||||
{
|
||||
exposure += 0.001f;
|
||||
}
|
||||
|
||||
if (glfwGetKey(window, GLFW_KEY_1) == GLFW_PRESS)
|
||||
{
|
||||
programChoice = 1;
|
||||
}
|
||||
else if (glfwGetKey(window, GLFW_KEY_2) == GLFW_PRESS)
|
||||
{
|
||||
programChoice = 2;
|
||||
}
|
||||
else if (glfwGetKey(window, GLFW_KEY_3) == GLFW_PRESS)
|
||||
{
|
||||
programChoice = 3;
|
||||
}
|
||||
}
|
||||
|
||||
// glfw: whenever the window size changed (by OS or user resize) this callback function executes
|
||||
// ---------------------------------------------------------------------------------------------
|
||||
void framebuffer_size_callback(GLFWwindow* window, int width, int height)
|
||||
{
|
||||
// make sure the viewport matches the new window dimensions; note that width and
|
||||
// height will be significantly larger than specified on retina displays.
|
||||
glViewport(0, 0, width, height);
|
||||
}
|
||||
|
||||
// glfw: whenever the mouse moves, this callback is called
|
||||
// -------------------------------------------------------
|
||||
void mouse_callback(GLFWwindow* window, double xposIn, double yposIn)
|
||||
{
|
||||
float xpos = static_cast<float>(xposIn);
|
||||
float ypos = static_cast<float>(yposIn);
|
||||
if (firstMouse)
|
||||
{
|
||||
lastX = xpos;
|
||||
lastY = ypos;
|
||||
firstMouse = false;
|
||||
}
|
||||
|
||||
float xoffset = xpos - lastX;
|
||||
float yoffset = lastY - ypos; // reversed since y-coordinates go from bottom to top
|
||||
|
||||
lastX = xpos;
|
||||
lastY = ypos;
|
||||
|
||||
camera.ProcessMouseMovement(xoffset, yoffset);
|
||||
}
|
||||
|
||||
// glfw: whenever the mouse scroll wheel scrolls, this callback is called
|
||||
// ----------------------------------------------------------------------
|
||||
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
|
||||
{
|
||||
camera.ProcessMouseScroll(static_cast<float>(yoffset));
|
||||
}
|
||||
|
||||
// utility function for loading a 2D texture from file
|
||||
// ---------------------------------------------------
|
||||
unsigned int loadTexture(char const * path, bool gammaCorrection)
|
||||
{
|
||||
unsigned int textureID;
|
||||
glGenTextures(1, &textureID);
|
||||
|
||||
int width, height, nrComponents;
|
||||
unsigned char *data = stbi_load(path, &width, &height, &nrComponents, 0);
|
||||
if (data)
|
||||
{
|
||||
GLenum internalFormat;
|
||||
GLenum dataFormat;
|
||||
if (nrComponents == 1)
|
||||
{
|
||||
internalFormat = dataFormat = GL_RED;
|
||||
}
|
||||
else if (nrComponents == 3)
|
||||
{
|
||||
internalFormat = gammaCorrection ? GL_SRGB : GL_RGB;
|
||||
dataFormat = GL_RGB;
|
||||
}
|
||||
else if (nrComponents == 4)
|
||||
{
|
||||
internalFormat = gammaCorrection ? GL_SRGB_ALPHA : GL_RGBA;
|
||||
dataFormat = GL_RGBA;
|
||||
}
|
||||
|
||||
glBindTexture(GL_TEXTURE_2D, textureID);
|
||||
glTexImage2D(GL_TEXTURE_2D, 0, internalFormat, width, height, 0, dataFormat, GL_UNSIGNED_BYTE, data);
|
||||
glGenerateMipmap(GL_TEXTURE_2D);
|
||||
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
|
||||
|
||||
stbi_image_free(data);
|
||||
}
|
||||
else
|
||||
{
|
||||
std::cout << "Texture failed to load at path: " << path << std::endl;
|
||||
stbi_image_free(data);
|
||||
}
|
||||
|
||||
return textureID;
|
||||
}
|
||||
Reference in New Issue
Block a user