Merge pull request #307 from alexpanter/master

Add pbr bloom example code
This commit is contained in:
Joey de Vries
2022-06-03 14:27:34 +02:00
committed by GitHub
13 changed files with 1245 additions and 0 deletions

View File

@@ -183,6 +183,7 @@ set(GUEST_ARTICLES
#8.guest/2021/3.tessellation/terrain_cpu_src
8.guest/2021/4.dsa
8.guest/2022/5.computeshader_helloworld
8.guest/2022/6.physically_based_bloom
)
configure_file(configuration/root_directory.h.in configuration/root_directory.h)

View File

@@ -0,0 +1,49 @@
#version 330 core
layout (location = 0) out vec4 FragColor;
layout (location = 1) out vec4 BrightColor;
in VS_OUT {
vec3 FragPos;
vec3 Normal;
vec2 TexCoords;
} fs_in;
struct Light {
vec3 Position;
vec3 Color;
};
uniform Light lights[4];
uniform sampler2D diffuseTexture;
uniform vec3 viewPos;
void main()
{
vec3 color = texture(diffuseTexture, fs_in.TexCoords).rgb;
vec3 normal = normalize(fs_in.Normal);
// ambient
vec3 ambient = 0.0 * color;
// lighting
vec3 lighting = vec3(0.0);
vec3 viewDir = normalize(viewPos - fs_in.FragPos);
for(int i = 0; i < 4; i++)
{
// diffuse
vec3 lightDir = normalize(lights[i].Position - fs_in.FragPos);
float diff = max(dot(lightDir, normal), 0.0);
vec3 result = lights[i].Color * diff * color;
// attenuation (use quadratic as we have gamma correction)
float distance = length(fs_in.FragPos - lights[i].Position);
result *= 1.0 / (distance * distance);
lighting += result;
}
vec3 result = ambient + lighting;
// check whether result is higher than some threshold, if so, output as bloom threshold color
float brightness = dot(result, vec3(0.2126, 0.7152, 0.0722));
if(brightness > 1.0)
BrightColor = vec4(result, 1.0);
else
BrightColor = vec4(0.0, 0.0, 0.0, 1.0);
FragColor = vec4(result, 1.0);
}

View File

@@ -0,0 +1,25 @@
#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec3 aNormal;
layout (location = 2) in vec2 aTexCoords;
out VS_OUT {
vec3 FragPos;
vec3 Normal;
vec2 TexCoords;
} vs_out;
uniform mat4 projection;
uniform mat4 view;
uniform mat4 model;
void main()
{
vs_out.FragPos = vec3(model * vec4(aPos, 1.0));
vs_out.TexCoords = aTexCoords;
mat3 normalMatrix = transpose(inverse(mat3(model)));
vs_out.Normal = normalize(normalMatrix * aNormal);
gl_Position = projection * view * model * vec4(aPos, 1.0);
}

View File

@@ -0,0 +1,50 @@
#version 330 core
out vec4 FragColor;
in vec2 TexCoords;
uniform sampler2D scene;
uniform sampler2D bloomBlur;
uniform float exposure;
uniform float bloomStrength = 0.04f;
uniform int programChoice;
vec3 bloom_none()
{
vec3 hdrColor = texture(scene, TexCoords).rgb;
return hdrColor;
}
vec3 bloom_old()
{
vec3 hdrColor = texture(scene, TexCoords).rgb;
vec3 bloomColor = texture(bloomBlur, TexCoords).rgb;
return hdrColor + bloomColor; // additive blending
}
vec3 bloom_new()
{
vec3 hdrColor = texture(scene, TexCoords).rgb;
vec3 bloomColor = texture(bloomBlur, TexCoords).rgb;
return mix(hdrColor, bloomColor, bloomStrength); // linear interpolation
}
void main()
{
// to bloom or not to bloom
vec3 result = vec3(0.0);
switch (programChoice)
{
case 1: result = bloom_none(); break;
case 2: result = bloom_old(); break;
case 3: result = bloom_new(); break;
default:
result = bloom_none(); break;
}
// tone mapping
result = vec3(1.0) - exp(-result * exposure);
// also gamma correct while we're at it
const float gamma = 2.2;
result = pow(result, vec3(1.0 / gamma));
FragColor = vec4(result, 1.0);
}

View File

@@ -0,0 +1,11 @@
#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec2 aTexCoords;
out vec2 TexCoords;
void main()
{
TexCoords = aTexCoords;
gl_Position = vec4(aPos, 1.0);
}

View File

@@ -0,0 +1,21 @@
#version 330 core
layout (location = 0) out vec4 FragColor;
layout (location = 1) out vec4 BrightColor;
in VS_OUT {
vec3 FragPos;
vec3 Normal;
vec2 TexCoords;
} fs_in;
uniform vec3 lightColor;
void main()
{
FragColor = vec4(lightColor, 1.0);
float brightness = dot(FragColor.rgb, vec3(0.2126, 0.7152, 0.0722));
if(brightness > 1.0)
BrightColor = vec4(FragColor.rgb, 1.0);
else
BrightColor = vec4(0.0, 0.0, 0.0, 1.0);
}

View File

@@ -0,0 +1,114 @@
#version 330 core
// This shader performs downsampling on a texture,
// as taken from Call Of Duty method, presented at ACM Siggraph 2014.
// This particular method was customly designed to eliminate
// "pulsating artifacts and temporal stability issues".
// Remember to add bilinear minification filter for this texture!
// Remember to use a floating-point texture format (for HDR)!
// Remember to use edge clamping for this texture!
uniform sampler2D srcTexture;
uniform vec2 srcResolution;
// which mip we are writing to, used for Karis average
uniform int mipLevel = 1;
in vec2 texCoord;
layout (location = 0) out vec3 downsample;
vec3 PowVec3(vec3 v, float p)
{
return vec3(pow(v.x, p), pow(v.y, p), pow(v.z, p));
}
const float invGamma = 1.0 / 2.2;
vec3 ToSRGB(vec3 v) { return PowVec3(v, invGamma); }
float sRGBToLuma(vec3 col)
{
//return dot(col, vec3(0.2126f, 0.7152f, 0.0722f));
return dot(col, vec3(0.299f, 0.587f, 0.114f));
}
float KarisAverage(vec3 col)
{
// Formula is 1 / (1 + luma)
float luma = sRGBToLuma(ToSRGB(col)) * 0.25f;
return 1.0f / (1.0f + luma);
}
// NOTE: This is the readable version of this shader. It will be optimized!
void main()
{
vec2 srcTexelSize = 1.0 / srcResolution;
float x = srcTexelSize.x;
float y = srcTexelSize.y;
// Take 13 samples around current texel:
// a - b - c
// - j - k -
// d - e - f
// - l - m -
// g - h - i
// === ('e' is the current texel) ===
vec3 a = texture(srcTexture, vec2(texCoord.x - 2*x, texCoord.y + 2*y)).rgb;
vec3 b = texture(srcTexture, vec2(texCoord.x, texCoord.y + 2*y)).rgb;
vec3 c = texture(srcTexture, vec2(texCoord.x + 2*x, texCoord.y + 2*y)).rgb;
vec3 d = texture(srcTexture, vec2(texCoord.x - 2*x, texCoord.y)).rgb;
vec3 e = texture(srcTexture, vec2(texCoord.x, texCoord.y)).rgb;
vec3 f = texture(srcTexture, vec2(texCoord.x + 2*x, texCoord.y)).rgb;
vec3 g = texture(srcTexture, vec2(texCoord.x - 2*x, texCoord.y - 2*y)).rgb;
vec3 h = texture(srcTexture, vec2(texCoord.x, texCoord.y - 2*y)).rgb;
vec3 i = texture(srcTexture, vec2(texCoord.x + 2*x, texCoord.y - 2*y)).rgb;
vec3 j = texture(srcTexture, vec2(texCoord.x - x, texCoord.y + y)).rgb;
vec3 k = texture(srcTexture, vec2(texCoord.x + x, texCoord.y + y)).rgb;
vec3 l = texture(srcTexture, vec2(texCoord.x - x, texCoord.y - y)).rgb;
vec3 m = texture(srcTexture, vec2(texCoord.x + x, texCoord.y - y)).rgb;
// Apply weighted distribution:
// 0.5 + 0.125 + 0.125 + 0.125 + 0.125 = 1
// a,b,d,e * 0.125
// b,c,e,f * 0.125
// d,e,g,h * 0.125
// e,f,h,i * 0.125
// j,k,l,m * 0.5
// This shows 5 square areas that are being sampled. But some of them overlap,
// so to have an energy preserving downsample we need to make some adjustments.
// The weights are the distributed, so that the sum of j,k,l,m (e.g.)
// contribute 0.5 to the final color output. The code below is written
// to effectively yield this sum. We get:
// 0.125*5 + 0.03125*4 + 0.0625*4 = 1
// Check if we need to perform Karis average on each block of 4 samples
vec3 groups[5];
switch (mipLevel)
{
case 0:
// We are writing to mip 0, so we need to apply Karis average to each block
// of 4 samples to prevent fireflies (very bright subpixels, leads to pulsating
// artifacts).
groups[0] = (a+b+d+e) * (0.125f/4.0f);
groups[1] = (b+c+e+f) * (0.125f/4.0f);
groups[2] = (d+e+g+h) * (0.125f/4.0f);
groups[3] = (e+f+h+i) * (0.125f/4.0f);
groups[4] = (j+k+l+m) * (0.5f/4.0f);
groups[0] *= KarisAverage(groups[0]);
groups[1] *= KarisAverage(groups[1]);
groups[2] *= KarisAverage(groups[2]);
groups[3] *= KarisAverage(groups[3]);
groups[4] *= KarisAverage(groups[4]);
downsample = groups[0]+groups[1]+groups[2]+groups[3]+groups[4];
downsample = max(downsample, 0.0001f);
break;
default:
downsample = e*0.125; // ok
downsample += (a+c+g+i)*0.03125; // ok
downsample += (b+d+f+h)*0.0625; // ok
downsample += (j+k+l+m)*0.125; // ok
break;
}
}

View File

@@ -0,0 +1,12 @@
#version 330 core
layout (location = 0) in vec2 aPosition;
layout (location = 1) in vec2 aTexCoord;
out vec2 texCoord;
void main()
{
gl_Position = vec4(aPosition.x, aPosition.y, 0.0, 1.0);
texCoord = aTexCoord;
}

View File

@@ -0,0 +1,47 @@
#version 330 core
// This shader performs upsampling on a texture,
// as taken from Call Of Duty method, presented at ACM Siggraph 2014.
// Remember to add bilinear minification filter for this texture!
// Remember to use a floating-point texture format (for HDR)!
// Remember to use edge clamping for this texture!
uniform sampler2D srcTexture;
uniform float filterRadius;
in vec2 texCoord;
layout (location = 0) out vec3 upsample;
void main()
{
// The filter kernel is applied with a radius, specified in texture
// coordinates, so that the radius will vary across mip resolutions.
float x = filterRadius;
float y = filterRadius;
// Take 9 samples around current texel:
// a - b - c
// d - e - f
// g - h - i
// === ('e' is the current texel) ===
vec3 a = texture(srcTexture, vec2(texCoord.x - x, texCoord.y + y)).rgb;
vec3 b = texture(srcTexture, vec2(texCoord.x, texCoord.y + y)).rgb;
vec3 c = texture(srcTexture, vec2(texCoord.x + x, texCoord.y + y)).rgb;
vec3 d = texture(srcTexture, vec2(texCoord.x - x, texCoord.y)).rgb;
vec3 e = texture(srcTexture, vec2(texCoord.x, texCoord.y)).rgb;
vec3 f = texture(srcTexture, vec2(texCoord.x + x, texCoord.y)).rgb;
vec3 g = texture(srcTexture, vec2(texCoord.x - x, texCoord.y - y)).rgb;
vec3 h = texture(srcTexture, vec2(texCoord.x, texCoord.y - y)).rgb;
vec3 i = texture(srcTexture, vec2(texCoord.x + x, texCoord.y - y)).rgb;
// Apply weighted distribution, by using a 3x3 tent filter:
// 1 | 1 2 1 |
// -- * | 2 4 2 |
// 16 | 1 2 1 |
upsample = e*4.0;
upsample += (b+d+f+h)*2.0;
upsample += (a+c+g+i);
upsample *= 1.0 / 16.0;
}

View File

@@ -0,0 +1,12 @@
#version 330 core
layout (location = 0) in vec2 aPosition;
layout (location = 1) in vec2 aTexCoord;
out vec2 texCoord;
void main()
{
gl_Position = vec4(aPosition.x, aPosition.y, 0.0, 1.0);
texCoord = aTexCoord;
}

View File

@@ -0,0 +1,32 @@
#version 330 core
out vec4 FragColor;
in vec2 TexCoords;
uniform sampler2D image;
uniform bool horizontal;
uniform float weight[5] = float[] (0.2270270270, 0.1945945946, 0.1216216216, 0.0540540541, 0.0162162162);
void main()
{
vec2 tex_offset = 1.0 / textureSize(image, 0); // gets size of single texel
vec3 result = texture(image, TexCoords).rgb * weight[0];
if(horizontal)
{
for(int i = 1; i < 5; ++i)
{
result += texture(image, TexCoords + vec2(tex_offset.x * i, 0.0)).rgb * weight[i];
result += texture(image, TexCoords - vec2(tex_offset.x * i, 0.0)).rgb * weight[i];
}
}
else
{
for(int i = 1; i < 5; ++i)
{
result += texture(image, TexCoords + vec2(0.0, tex_offset.y * i)).rgb * weight[i];
result += texture(image, TexCoords - vec2(0.0, tex_offset.y * i)).rgb * weight[i];
}
}
FragColor = vec4(result, 1.0);
}

View File

@@ -0,0 +1,11 @@
#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec2 aTexCoords;
out vec2 TexCoords;
void main()
{
TexCoords = aTexCoords;
gl_Position = vec4(aPos, 1.0);
}

View File

@@ -0,0 +1,860 @@
#include <glad/glad.h>
#include <GLFW/glfw3.h>
#include <stb_image.h>
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>
#include <learnopengl/filesystem.h>
#include <learnopengl/shader.h>
#include <learnopengl/camera.h>
#include <learnopengl/model.h>
#include <iostream>
#include <vector>
void framebuffer_size_callback(GLFWwindow* window, int width, int height);
void mouse_callback(GLFWwindow* window, double xpos, double ypos);
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);
void processInput(GLFWwindow *window);
unsigned int loadTexture(const char *path, bool gammaCorrection);
void renderQuad();
void renderCube();
// settings
const unsigned int SCR_WIDTH = 800;
const unsigned int SCR_HEIGHT = 600;
bool bloom = true;
float exposure = 1.0f;
int programChoice = 1;
float bloomFilterRadius = 0.005f;
// camera
Camera camera(glm::vec3(0.0f, 0.0f, 5.0f));
float lastX = (float)SCR_WIDTH / 2.0;
float lastY = (float)SCR_HEIGHT / 2.0;
bool firstMouse = true;
// timing
float deltaTime = 0.0f;
float lastFrame = 0.0f;
// bloom stuff
struct bloomMip
{
glm::vec2 size;
glm::ivec2 intSize;
unsigned int texture;
};
class bloomFBO
{
public:
bloomFBO();
~bloomFBO();
bool Init(unsigned int windowWidth, unsigned int windowHeight, unsigned int mipChainLength);
void Destroy();
void BindForWriting();
const std::vector<bloomMip>& MipChain() const;
private:
bool mInit;
unsigned int mFBO;
std::vector<bloomMip> mMipChain;
};
bloomFBO::bloomFBO() : mInit(false) {}
bloomFBO::~bloomFBO() {}
bool bloomFBO::Init(unsigned int windowWidth, unsigned int windowHeight, unsigned int mipChainLength)
{
if (mInit) return true;
glGenFramebuffers(1, &mFBO);
glBindFramebuffer(GL_FRAMEBUFFER, mFBO);
glm::vec2 mipSize((float)windowWidth, (float)windowHeight);
glm::ivec2 mipIntSize((int)windowWidth, (int)windowHeight);
// Safety check
if (windowWidth > (unsigned int)INT_MAX || windowHeight > (unsigned int)INT_MAX) {
std::cerr << "Window size conversion overflow - cannot build bloom FBO!" << std::endl;
return false;
}
for (GLuint i = 0; i < mipChainLength; i++)
{
bloomMip mip;
mipSize *= 0.5f;
mipIntSize /= 2;
mip.size = mipSize;
mip.intSize = mipIntSize;
glGenTextures(1, &mip.texture);
glBindTexture(GL_TEXTURE_2D, mip.texture);
// we are downscaling an HDR color buffer, so we need a float texture format
glTexImage2D(GL_TEXTURE_2D, 0, GL_R11F_G11F_B10F,
(int)mipSize.x, (int)mipSize.y,
0, GL_RGB, GL_FLOAT, nullptr);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
std::cout << "Created bloom mip " << mipIntSize.x << 'x' << mipIntSize.y << std::endl;
mMipChain.emplace_back(mip);
}
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
GL_TEXTURE_2D, mMipChain[0].texture, 0);
// setup attachments
unsigned int attachments[1] = { GL_COLOR_ATTACHMENT0 };
glDrawBuffers(1, attachments);
// check completion status
int status = glCheckFramebufferStatus(GL_FRAMEBUFFER);
if (status != GL_FRAMEBUFFER_COMPLETE)
{
printf("gbuffer FBO error, status: 0x%x\n", status);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
return false;
}
glBindFramebuffer(GL_FRAMEBUFFER, 0);
mInit = true;
return true;
}
void bloomFBO::Destroy()
{
for (int i = 0; i < (int)mMipChain.size(); i++) {
glDeleteTextures(1, &mMipChain[i].texture);
mMipChain[i].texture = 0;
}
glDeleteFramebuffers(1, &mFBO);
mFBO = 0;
mInit = false;
}
void bloomFBO::BindForWriting()
{
glBindFramebuffer(GL_FRAMEBUFFER, mFBO);
}
const std::vector<bloomMip>& bloomFBO::MipChain() const
{
return mMipChain;
}
class BloomRenderer
{
public:
BloomRenderer();
~BloomRenderer();
bool Init(unsigned int windowWidth, unsigned int windowHeight);
void Destroy();
void RenderBloomTexture(unsigned int srcTexture, float filterRadius);
unsigned int BloomTexture();
unsigned int BloomMip_i(int index);
private:
void RenderDownsamples(unsigned int srcTexture);
void RenderUpsamples(float filterRadius);
bool mInit;
bloomFBO mFBO;
glm::ivec2 mSrcViewportSize;
glm::vec2 mSrcViewportSizeFloat;
Shader* mDownsampleShader;
Shader* mUpsampleShader;
bool mKarisAverageOnDownsample = true;
};
BloomRenderer::BloomRenderer() : mInit(false) {}
BloomRenderer::~BloomRenderer() {}
bool BloomRenderer::Init(unsigned int windowWidth, unsigned int windowHeight)
{
if (mInit) return true;
mSrcViewportSize = glm::ivec2(windowWidth, windowHeight);
mSrcViewportSizeFloat = glm::vec2((float)windowWidth, (float)windowHeight);
// Framebuffer
const unsigned int num_bloom_mips = 6; // TODO: Play around with this value
bool status = mFBO.Init(windowWidth, windowHeight, num_bloom_mips);
if (!status) {
std::cerr << "Failed to initialize bloom FBO - cannot create bloom renderer!\n";
return false;
}
// Shaders
mDownsampleShader = new Shader("6.new_downsample.vs", "6.new_downsample.fs");
mUpsampleShader = new Shader("6.new_upsample.vs", "6.new_upsample.fs");
// Downsample
mDownsampleShader->use();
mDownsampleShader->setInt("srcTexture", 0);
glUseProgram(0);
// Upsample
mUpsampleShader->use();
mUpsampleShader->setInt("srcTexture", 0);
glUseProgram(0);
return true;
}
void BloomRenderer::Destroy()
{
mFBO.Destroy();
delete mDownsampleShader;
delete mUpsampleShader;
}
void BloomRenderer::RenderDownsamples(unsigned int srcTexture)
{
const std::vector<bloomMip>& mipChain = mFBO.MipChain();
mDownsampleShader->use();
mDownsampleShader->setVec2("srcResolution", mSrcViewportSizeFloat);
if (mKarisAverageOnDownsample) {
mDownsampleShader->setInt("mipLevel", 0);
}
// Bind srcTexture (HDR color buffer) as initial texture input
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, srcTexture);
// Progressively downsample through the mip chain
for (int i = 0; i < (int)mipChain.size(); i++)
{
const bloomMip& mip = mipChain[i];
glViewport(0, 0, mip.size.x, mip.size.y);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
GL_TEXTURE_2D, mip.texture, 0);
// Render screen-filled quad of resolution of current mip
renderQuad();
// Set current mip resolution as srcResolution for next iteration
mDownsampleShader->setVec2("srcResolution", mip.size);
// Set current mip as texture input for next iteration
glBindTexture(GL_TEXTURE_2D, mip.texture);
// Disable Karis average for consequent downsamples
if (i == 0) { mDownsampleShader->setInt("mipLevel", 1); }
}
glUseProgram(0);
}
void BloomRenderer::RenderUpsamples(float filterRadius)
{
const std::vector<bloomMip>& mipChain = mFBO.MipChain();
mUpsampleShader->use();
mUpsampleShader->setFloat("filterRadius", filterRadius);
// Enable additive blending
glEnable(GL_BLEND);
glBlendFunc(GL_ONE, GL_ONE);
glBlendEquation(GL_FUNC_ADD);
for (int i = (int)mipChain.size() - 1; i > 0; i--)
{
const bloomMip& mip = mipChain[i];
const bloomMip& nextMip = mipChain[i-1];
// Bind viewport and texture from where to read
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, mip.texture);
// Set framebuffer render target (we write to this texture)
glViewport(0, 0, nextMip.size.x, nextMip.size.y);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
GL_TEXTURE_2D, nextMip.texture, 0);
// Render screen-filled quad of resolution of current mip
renderQuad();
}
// Disable additive blending
//glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
glDisable(GL_BLEND);
glUseProgram(0);
}
void BloomRenderer::RenderBloomTexture(unsigned int srcTexture, float filterRadius)
{
mFBO.BindForWriting();
this->RenderDownsamples(srcTexture);
this->RenderUpsamples(filterRadius);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
// Restore viewport
glViewport(0, 0, mSrcViewportSize.x, mSrcViewportSize.y);
}
GLuint BloomRenderer::BloomTexture()
{
return mFBO.MipChain()[0].texture;
}
GLuint BloomRenderer::BloomMip_i(int index)
{
const std::vector<bloomMip>& mipChain = mFBO.MipChain();
int size = (int)mipChain.size();
return mipChain[(index > size-1) ? size-1 : (index < 0) ? 0 : index].texture;
}
int main()
{
// glfw: initialize and configure
// ------------------------------
glfwInit();
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
#ifdef __APPLE__
glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
#endif
// glfw window creation
// --------------------
GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", NULL, NULL);
if (window == NULL)
{
std::cout << "Failed to create GLFW window" << std::endl;
glfwTerminate();
return -1;
}
glfwMakeContextCurrent(window);
glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
glfwSetCursorPosCallback(window, mouse_callback);
glfwSetScrollCallback(window, scroll_callback);
// tell GLFW to capture our mouse
glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);
// glad: load all OpenGL function pointers
// ---------------------------------------
if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
{
std::cout << "Failed to initialize GLAD" << std::endl;
return -1;
}
// configure global opengl state
// -----------------------------
glEnable(GL_DEPTH_TEST);
// build and compile shaders
// -------------------------
Shader shader("6.bloom.vs", "6.bloom.fs");
Shader shaderLight("6.bloom.vs", "6.light_box.fs");
Shader shaderBlur("6.old_blur.vs", "6.old_blur.fs");
Shader shaderBloomFinal("6.bloom_final.vs", "6.bloom_final.fs");
// load textures
// -------------
unsigned int woodTexture = loadTexture(FileSystem::getPath("resources/textures/wood.png").c_str(), true); // note that we're loading the texture as an SRGB texture
unsigned int containerTexture = loadTexture(FileSystem::getPath("resources/textures/container2.png").c_str(), true); // note that we're loading the texture as an SRGB texture
// configure (floating point) framebuffers
// ---------------------------------------
unsigned int hdrFBO;
glGenFramebuffers(1, &hdrFBO);
glBindFramebuffer(GL_FRAMEBUFFER, hdrFBO);
// create 2 floating point color buffers (1 for normal rendering, other for brightness threshold values)
unsigned int colorBuffers[2];
glGenTextures(2, colorBuffers);
for (unsigned int i = 0; i < 2; i++)
{
glBindTexture(GL_TEXTURE_2D, colorBuffers[i]);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA16F, SCR_WIDTH, SCR_HEIGHT, 0, GL_RGBA, GL_FLOAT, NULL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); // we clamp to the edge as the blur filter would otherwise sample repeated texture values!
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
// attach texture to framebuffer
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0 + i, GL_TEXTURE_2D, colorBuffers[i], 0);
}
// create and attach depth buffer (renderbuffer)
unsigned int rboDepth;
glGenRenderbuffers(1, &rboDepth);
glBindRenderbuffer(GL_RENDERBUFFER, rboDepth);
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT, SCR_WIDTH, SCR_HEIGHT);
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, rboDepth);
// tell OpenGL which color attachments we'll use (of this framebuffer) for rendering
unsigned int attachments[2] = { GL_COLOR_ATTACHMENT0, GL_COLOR_ATTACHMENT1 };
glDrawBuffers(2, attachments);
// finally check if framebuffer is complete
if (glCheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE)
std::cout << "Framebuffer not complete!" << std::endl;
glBindFramebuffer(GL_FRAMEBUFFER, 0);
// ping-pong-framebuffer for blurring
unsigned int pingpongFBO[2];
unsigned int pingpongColorbuffers[2];
glGenFramebuffers(2, pingpongFBO);
glGenTextures(2, pingpongColorbuffers);
for (unsigned int i = 0; i < 2; i++)
{
glBindFramebuffer(GL_FRAMEBUFFER, pingpongFBO[i]);
glBindTexture(GL_TEXTURE_2D, pingpongColorbuffers[i]);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA16F, SCR_WIDTH, SCR_HEIGHT, 0, GL_RGBA, GL_FLOAT, NULL);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); // we clamp to the edge as the blur filter would otherwise sample repeated texture values!
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, pingpongColorbuffers[i], 0);
// also check if framebuffers are complete (no need for depth buffer)
if (glCheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE)
std::cout << "Framebuffer not complete!" << std::endl;
}
// lighting info
// -------------
// positions
std::vector<glm::vec3> lightPositions;
lightPositions.push_back(glm::vec3( 0.0f, 0.5f, 1.5f));
lightPositions.push_back(glm::vec3(-4.0f, 0.5f, -3.0f));
lightPositions.push_back(glm::vec3( 3.0f, 0.5f, 1.0f));
lightPositions.push_back(glm::vec3(-.8f, 2.4f, -1.0f));
// colors
std::vector<glm::vec3> lightColors;
lightColors.push_back(glm::vec3(5.0f, 5.0f, 5.0f));
lightColors.push_back(glm::vec3(10.0f, 0.0f, 0.0f));
lightColors.push_back(glm::vec3(0.0f, 0.0f, 15.0f));
lightColors.push_back(glm::vec3(0.0f, 5.0f, 0.0f));
// shader configuration
// --------------------
shader.use();
shader.setInt("diffuseTexture", 0);
shaderBlur.use();
shaderBlur.setInt("image", 0);
shaderBloomFinal.use();
shaderBloomFinal.setInt("scene", 0);
shaderBloomFinal.setInt("bloomBlur", 1);
// bloom renderer
// --------------
BloomRenderer bloomRenderer;
bloomRenderer.Init(SCR_WIDTH, SCR_HEIGHT);
// render loop
// -----------
while (!glfwWindowShouldClose(window))
{
// per-frame time logic
// --------------------
float currentFrame = static_cast<float>(glfwGetTime());
deltaTime = currentFrame - lastFrame;
lastFrame = currentFrame;
// input
// -----
processInput(window);
// render
// ------
glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// 1. render scene into floating point framebuffer
// -----------------------------------------------
glBindFramebuffer(GL_FRAMEBUFFER, hdrFBO);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glm::mat4 projection = glm::perspective(glm::radians(camera.Zoom), (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f);
glm::mat4 view = camera.GetViewMatrix();
glm::mat4 model = glm::mat4(1.0f);
shader.use();
shader.setMat4("projection", projection);
shader.setMat4("view", view);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, woodTexture);
// set lighting uniforms
for (unsigned int i = 0; i < lightPositions.size(); i++)
{
shader.setVec3("lights[" + std::to_string(i) + "].Position", lightPositions[i]);
shader.setVec3("lights[" + std::to_string(i) + "].Color", lightColors[i]);
}
shader.setVec3("viewPos", camera.Position);
// create one large cube that acts as the floor
model = glm::mat4(1.0f);
model = glm::translate(model, glm::vec3(0.0f, -1.0f, 0.0));
model = glm::scale(model, glm::vec3(12.5f, 0.5f, 12.5f));
shader.setMat4("model", model);
renderCube();
// then create multiple cubes as the scenery
glBindTexture(GL_TEXTURE_2D, containerTexture);
model = glm::mat4(1.0f);
model = glm::translate(model, glm::vec3(0.0f, 1.5f, 0.0));
model = glm::scale(model, glm::vec3(0.5f));
shader.setMat4("model", model);
renderCube();
model = glm::mat4(1.0f);
model = glm::translate(model, glm::vec3(2.0f, 0.0f, 1.0));
model = glm::scale(model, glm::vec3(0.5f));
shader.setMat4("model", model);
renderCube();
model = glm::mat4(1.0f);
model = glm::translate(model, glm::vec3(-1.0f, -1.0f, 2.0));
model = glm::rotate(model, glm::radians(60.0f), glm::normalize(glm::vec3(1.0, 0.0, 1.0)));
shader.setMat4("model", model);
renderCube();
model = glm::mat4(1.0f);
model = glm::translate(model, glm::vec3(0.0f, 2.7f, 4.0));
model = glm::rotate(model, glm::radians(23.0f), glm::normalize(glm::vec3(1.0, 0.0, 1.0)));
model = glm::scale(model, glm::vec3(1.25));
shader.setMat4("model", model);
renderCube();
model = glm::mat4(1.0f);
model = glm::translate(model, glm::vec3(-2.0f, 1.0f, -3.0));
model = glm::rotate(model, glm::radians(124.0f), glm::normalize(glm::vec3(1.0, 0.0, 1.0)));
shader.setMat4("model", model);
renderCube();
model = glm::mat4(1.0f);
model = glm::translate(model, glm::vec3(-3.0f, 0.0f, 0.0));
model = glm::scale(model, glm::vec3(0.5f));
shader.setMat4("model", model);
renderCube();
// finally show all the light sources as bright cubes
shaderLight.use();
shaderLight.setMat4("projection", projection);
shaderLight.setMat4("view", view);
for (unsigned int i = 0; i < lightPositions.size(); i++)
{
model = glm::mat4(1.0f);
model = glm::translate(model, glm::vec3(lightPositions[i]));
model = glm::scale(model, glm::vec3(0.25f));
shaderLight.setMat4("model", model);
shaderLight.setVec3("lightColor", lightColors[i]);
renderCube();
}
glBindFramebuffer(GL_FRAMEBUFFER, 0);
if (programChoice < 1 || programChoice > 3) { programChoice = 1; }
bloom = (programChoice == 1) ? false : true;
bool horizontal = true;
// 2.A) bloom is disabled
// ----------------------
if (programChoice == 1)
{
}
// 2.B) blur bright fragments with two-pass Gaussian Blur
// ------------------------------------------------------
else if (programChoice == 2)
{
bool first_iteration = true;
unsigned int amount = 10;
shaderBlur.use();
for (unsigned int i = 0; i < amount; i++)
{
glBindFramebuffer(GL_FRAMEBUFFER, pingpongFBO[horizontal]);
shaderBlur.setInt("horizontal", horizontal);
glBindTexture(GL_TEXTURE_2D, first_iteration ? colorBuffers[1] : pingpongColorbuffers[!horizontal]); // bind texture of other framebuffer (or scene if first iteration)
renderQuad();
horizontal = !horizontal;
if (first_iteration)
first_iteration = false;
}
glBindFramebuffer(GL_FRAMEBUFFER, 0);
}
// 2.C) use unthresholded bloom with progressive downsample/upsampling
// -------------------------------------------------------------------
else if (programChoice == 3)
{
bloomRenderer.RenderBloomTexture(colorBuffers[1], bloomFilterRadius);
}
// 3. now render floating point color buffer to 2D quad and tonemap HDR colors to default framebuffer's (clamped) color range
// --------------------------------------------------------------------------------------------------------------------------
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
shaderBloomFinal.use();
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, colorBuffers[0]);
glActiveTexture(GL_TEXTURE1);
if (programChoice == 1) {
glBindTexture(GL_TEXTURE_2D, 0); // trick to bind invalid texture "0", we don't care either way!
}
if (programChoice == 2) {
glBindTexture(GL_TEXTURE_2D, pingpongColorbuffers[!horizontal]);
}
else if (programChoice == 3) {
glBindTexture(GL_TEXTURE_2D, bloomRenderer.BloomTexture());
}
shaderBloomFinal.setInt("programChoice", programChoice);
shaderBloomFinal.setFloat("exposure", exposure);
renderQuad();
//std::cout << "bloom: " << (bloom ? "on" : "off") << "| exposure: " << exposure << std::endl;
// glfw: swap buffers and poll IO events (keys pressed/released, mouse moved etc.)
// -------------------------------------------------------------------------------
glfwSwapBuffers(window);
glfwPollEvents();
}
bloomRenderer.Destroy();
glfwTerminate();
return 0;
}
// renderCube() renders a 1x1 3D cube in NDC.
// -------------------------------------------------
unsigned int cubeVAO = 0;
unsigned int cubeVBO = 0;
void renderCube()
{
// initialize (if necessary)
if (cubeVAO == 0)
{
float vertices[] = {
// back face
-1.0f, -1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, // bottom-left
1.0f, 1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f, // top-right
1.0f, -1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 1.0f, 0.0f, // bottom-right
1.0f, 1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f, // top-right
-1.0f, -1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, // bottom-left
-1.0f, 1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 1.0f, // top-left
// front face
-1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, // bottom-left
1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, // bottom-right
1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, // top-right
1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, // top-right
-1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, // top-left
-1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, // bottom-left
// left face
-1.0f, 1.0f, 1.0f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-right
-1.0f, 1.0f, -1.0f, -1.0f, 0.0f, 0.0f, 1.0f, 1.0f, // top-left
-1.0f, -1.0f, -1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-left
-1.0f, -1.0f, -1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-left
-1.0f, -1.0f, 1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 0.0f, // bottom-right
-1.0f, 1.0f, 1.0f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-right
// right face
1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-left
1.0f, -1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-right
1.0f, 1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, // top-right
1.0f, -1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-right
1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-left
1.0f, -1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, // bottom-left
// bottom face
-1.0f, -1.0f, -1.0f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f, // top-right
1.0f, -1.0f, -1.0f, 0.0f, -1.0f, 0.0f, 1.0f, 1.0f, // top-left
1.0f, -1.0f, 1.0f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f, // bottom-left
1.0f, -1.0f, 1.0f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f, // bottom-left
-1.0f, -1.0f, 1.0f, 0.0f, -1.0f, 0.0f, 0.0f, 0.0f, // bottom-right
-1.0f, -1.0f, -1.0f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f, // top-right
// top face
-1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, // top-left
1.0f, 1.0f , 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, // bottom-right
1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, // top-right
1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, // bottom-right
-1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, // top-left
-1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f // bottom-left
};
glGenVertexArrays(1, &cubeVAO);
glGenBuffers(1, &cubeVBO);
// fill buffer
glBindBuffer(GL_ARRAY_BUFFER, cubeVBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
// link vertex attributes
glBindVertexArray(cubeVAO);
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)0);
glEnableVertexAttribArray(1);
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)(3 * sizeof(float)));
glEnableVertexAttribArray(2);
glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)(6 * sizeof(float)));
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindVertexArray(0);
}
// render Cube
glBindVertexArray(cubeVAO);
glDrawArrays(GL_TRIANGLES, 0, 36);
glBindVertexArray(0);
}
// renderQuad() renders a 1x1 XY quad in NDC
// -----------------------------------------
unsigned int quadVAO = 0;
unsigned int quadVBO;
void renderQuad()
{
if (quadVAO == 0)
{
float quadVertices[] = {
// positions // texture Coords
-1.0f, 1.0f, 0.0f, 0.0f, 1.0f,
-1.0f, -1.0f, 0.0f, 0.0f, 0.0f,
1.0f, 1.0f, 0.0f, 1.0f, 1.0f,
1.0f, -1.0f, 0.0f, 1.0f, 0.0f,
};
// setup plane VAO
glGenVertexArrays(1, &quadVAO);
glGenBuffers(1, &quadVBO);
glBindVertexArray(quadVAO);
glBindBuffer(GL_ARRAY_BUFFER, quadVBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(quadVertices), &quadVertices, GL_STATIC_DRAW);
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (void*)0);
glEnableVertexAttribArray(1);
glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (void*)(3 * sizeof(float)));
}
glBindVertexArray(quadVAO);
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
glBindVertexArray(0);
}
// process all input: query GLFW whether relevant keys are pressed/released this frame and react accordingly
// ---------------------------------------------------------------------------------------------------------
void processInput(GLFWwindow *window)
{
if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
glfwSetWindowShouldClose(window, true);
if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS)
camera.ProcessKeyboard(FORWARD, deltaTime);
if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)
camera.ProcessKeyboard(BACKWARD, deltaTime);
if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS)
camera.ProcessKeyboard(LEFT, deltaTime);
if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS)
camera.ProcessKeyboard(RIGHT, deltaTime);
if (glfwGetKey(window, GLFW_KEY_Q) == GLFW_PRESS)
{
if (exposure > 0.0f)
exposure -= 0.001f;
else
exposure = 0.0f;
}
else if (glfwGetKey(window, GLFW_KEY_E) == GLFW_PRESS)
{
exposure += 0.001f;
}
if (glfwGetKey(window, GLFW_KEY_1) == GLFW_PRESS)
{
programChoice = 1;
}
else if (glfwGetKey(window, GLFW_KEY_2) == GLFW_PRESS)
{
programChoice = 2;
}
else if (glfwGetKey(window, GLFW_KEY_3) == GLFW_PRESS)
{
programChoice = 3;
}
}
// glfw: whenever the window size changed (by OS or user resize) this callback function executes
// ---------------------------------------------------------------------------------------------
void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{
// make sure the viewport matches the new window dimensions; note that width and
// height will be significantly larger than specified on retina displays.
glViewport(0, 0, width, height);
}
// glfw: whenever the mouse moves, this callback is called
// -------------------------------------------------------
void mouse_callback(GLFWwindow* window, double xposIn, double yposIn)
{
float xpos = static_cast<float>(xposIn);
float ypos = static_cast<float>(yposIn);
if (firstMouse)
{
lastX = xpos;
lastY = ypos;
firstMouse = false;
}
float xoffset = xpos - lastX;
float yoffset = lastY - ypos; // reversed since y-coordinates go from bottom to top
lastX = xpos;
lastY = ypos;
camera.ProcessMouseMovement(xoffset, yoffset);
}
// glfw: whenever the mouse scroll wheel scrolls, this callback is called
// ----------------------------------------------------------------------
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
{
camera.ProcessMouseScroll(static_cast<float>(yoffset));
}
// utility function for loading a 2D texture from file
// ---------------------------------------------------
unsigned int loadTexture(char const * path, bool gammaCorrection)
{
unsigned int textureID;
glGenTextures(1, &textureID);
int width, height, nrComponents;
unsigned char *data = stbi_load(path, &width, &height, &nrComponents, 0);
if (data)
{
GLenum internalFormat;
GLenum dataFormat;
if (nrComponents == 1)
{
internalFormat = dataFormat = GL_RED;
}
else if (nrComponents == 3)
{
internalFormat = gammaCorrection ? GL_SRGB : GL_RGB;
dataFormat = GL_RGB;
}
else if (nrComponents == 4)
{
internalFormat = gammaCorrection ? GL_SRGB_ALPHA : GL_RGBA;
dataFormat = GL_RGBA;
}
glBindTexture(GL_TEXTURE_2D, textureID);
glTexImage2D(GL_TEXTURE_2D, 0, internalFormat, width, height, 0, dataFormat, GL_UNSIGNED_BYTE, data);
glGenerateMipmap(GL_TEXTURE_2D);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
stbi_image_free(data);
}
else
{
std::cout << "Texture failed to load at path: " << path << std::endl;
stbi_image_free(data);
}
return textureID;
}