Code re-work with content: model-loading.

This commit is contained in:
Joey de Vries
2017-05-31 19:02:05 +02:00
parent e2e36d6ff8
commit 70b789d3b9
4 changed files with 162 additions and 162 deletions

View File

@@ -1,32 +1,33 @@
#pragma once
// Std. Includes
#ifndef MESH_H
#define MESH_H
#include <glad/glad.h> // holds all OpenGL type declarations
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <string>
#include <fstream>
#include <sstream>
#include <iostream>
#include <vector>
using namespace std;
// GL Includes
#include <glad/glad.h> // Contains all the necessery OpenGL includes
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
struct Vertex {
// Position
// position
glm::vec3 Position;
// Normal
// normal
glm::vec3 Normal;
// TexCoords
// texCoords
glm::vec2 TexCoords;
// Tangent
// tangent
glm::vec3 Tangent;
// Bitangent
// bitangent
glm::vec3 Bitangent;
};
struct Texture {
GLuint id;
unsigned int id;
string type;
aiString path;
};
@@ -35,109 +36,103 @@ class Mesh {
public:
/* Mesh Data */
vector<Vertex> vertices;
vector<GLuint> indices;
vector<unsigned int> indices;
vector<Texture> textures;
GLuint VAO;
unsigned int VAO;
/* Functions */
// Constructor
Mesh(vector<Vertex> vertices, vector<GLuint> indices, vector<Texture> textures)
// constructor
Mesh(vector<Vertex> vertices, vector<unsigned int> indices, vector<Texture> textures)
{
this->vertices = vertices;
this->indices = indices;
this->textures = textures;
// Now that we have all the required data, set the vertex buffers and its attribute pointers.
this->setupMesh();
// now that we have all the required data, set the vertex buffers and its attribute pointers.
setupMesh();
}
// Render the mesh
// render the mesh
void Draw(Shader shader)
{
// Bind appropriate textures
GLuint diffuseNr = 1;
GLuint specularNr = 1;
GLuint normalNr = 1;
GLuint heightNr = 1;
for(GLuint i = 0; i < this->textures.size(); i++)
// bind appropriate textures
unsigned int diffuseNr = 1;
unsigned int specularNr = 1;
unsigned int normalNr = 1;
unsigned int heightNr = 1;
for(unsigned int i = 0; i < textures.size(); i++)
{
glActiveTexture(GL_TEXTURE0 + i); // Active proper texture unit before binding
// Retrieve texture number (the N in diffuse_textureN)
glActiveTexture(GL_TEXTURE0 + i); // active proper texture unit before binding
// retrieve texture number (the N in diffuse_textureN)
stringstream ss;
string number;
string name = this->textures[i].type;
string name = textures[i].type;
if(name == "texture_diffuse")
ss << diffuseNr++; // Transfer GLuint to stream
ss << diffuseNr++; // transfer unsigned int to stream
else if(name == "texture_specular")
ss << specularNr++; // Transfer GLuint to stream
ss << specularNr++; // transfer unsigned int to stream
else if(name == "texture_normal")
ss << normalNr++; // Transfer GLuint to stream
ss << normalNr++; // transfer unsigned int to stream
else if(name == "texture_height")
ss << heightNr++; // Transfer GLuint to stream
ss << heightNr++; // transfer unsigned int to stream
number = ss.str();
// Now set the sampler to the correct texture unit
// now set the sampler to the correct texture unit
glUniform1i(glGetUniformLocation(shader.ID, (name + number).c_str()), i);
// And finally bind the texture
glBindTexture(GL_TEXTURE_2D, this->textures[i].id);
// and finally bind the texture
glBindTexture(GL_TEXTURE_2D, textures[i].id);
}
// Draw mesh
glBindVertexArray(this->VAO);
glDrawElements(GL_TRIANGLES, this->indices.size(), GL_UNSIGNED_INT, 0);
// draw mesh
glBindVertexArray(VAO);
glDrawElements(GL_TRIANGLES, indices.size(), GL_UNSIGNED_INT, 0);
glBindVertexArray(0);
// Always good practice to set everything back to defaults once configured.
for (GLuint i = 0; i < this->textures.size(); i++)
{
glActiveTexture(GL_TEXTURE0 + i);
glBindTexture(GL_TEXTURE_2D, 0);
}
// always good practice to set everything back to defaults once configured.
glActiveTexture(GL_TEXTURE0);
}
private:
/* Render data */
GLuint VBO, EBO;
unsigned int VBO, EBO;
/* Functions */
// Initializes all the buffer objects/arrays
// initializes all the buffer objects/arrays
void setupMesh()
{
// Create buffers/arrays
glGenVertexArrays(1, &this->VAO);
glGenBuffers(1, &this->VBO);
glGenBuffers(1, &this->EBO);
// create buffers/arrays
glGenVertexArrays(1, &VAO);
glGenBuffers(1, &VBO);
glGenBuffers(1, &EBO);
glBindVertexArray(this->VAO);
// Load data into vertex buffers
glBindBuffer(GL_ARRAY_BUFFER, this->VBO);
glBindVertexArray(VAO);
// load data into vertex buffers
glBindBuffer(GL_ARRAY_BUFFER, VBO);
// A great thing about structs is that their memory layout is sequential for all its items.
// The effect is that we can simply pass a pointer to the struct and it translates perfectly to a glm::vec3/2 array which
// again translates to 3/2 floats which translates to a byte array.
glBufferData(GL_ARRAY_BUFFER, this->vertices.size() * sizeof(Vertex), &this->vertices[0], GL_STATIC_DRAW);
glBufferData(GL_ARRAY_BUFFER, vertices.size() * sizeof(Vertex), &vertices[0], GL_STATIC_DRAW);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, this->EBO);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, this->indices.size() * sizeof(GLuint), &this->indices[0], GL_STATIC_DRAW);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, EBO);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices.size() * sizeof(unsigned int), &indices[0], GL_STATIC_DRAW);
// Set the vertex attribute pointers
// Vertex Positions
// set the vertex attribute pointers
// vertex Positions
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), (GLvoid*)0);
// Vertex Normals
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)0);
// vertex normals
glEnableVertexAttribArray(1);
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), (GLvoid*)offsetof(Vertex, Normal));
// Vertex Texture Coords
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)offsetof(Vertex, Normal));
// vertex texture coords
glEnableVertexAttribArray(2);
glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, sizeof(Vertex), (GLvoid*)offsetof(Vertex, TexCoords));
// Vertex Tangent
glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)offsetof(Vertex, TexCoords));
// vertex tangent
glEnableVertexAttribArray(3);
glVertexAttribPointer(3, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), (GLvoid*)offsetof(Vertex, Tangent));
// Vertex Bitangent
glVertexAttribPointer(3, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)offsetof(Vertex, Tangent));
// vertex bitangent
glEnableVertexAttribArray(4);
glVertexAttribPointer(4, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), (GLvoid*)offsetof(Vertex, Bitangent));
glVertexAttribPointer(4, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)offsetof(Vertex, Bitangent));
glBindVertexArray(0);
}
};
#endif

View File

@@ -1,14 +1,8 @@
#pragma once
// Std. Includes
#include <string>
#include <fstream>
#include <sstream>
#include <iostream>
#include <map>
#include <vector>
using namespace std;
// GL Includes
#include <glad/glad.h> // Contains all the necessery OpenGL includes
#ifndef MODEL_H
#define MODEL_H
#include <glad/glad.h>
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <stb_image.h>
@@ -18,98 +12,106 @@ using namespace std;
#include <learnopengl/mesh.h>
unsigned int TextureFromFile(const char* path, string directory, bool gamma = false);
#include <string>
#include <fstream>
#include <sstream>
#include <iostream>
#include <map>
#include <vector>
using namespace std;
unsigned int TextureFromFile(const char *path, const string &directory, bool gamma = false);
class Model
{
public:
/* Model Data */
vector<Texture> textures_loaded; // Stores all the textures loaded so far, optimization to make sure textures aren't loaded more than once.
vector<Texture> textures_loaded; // stores all the textures loaded so far, optimization to make sure textures aren't loaded more than once.
vector<Mesh> meshes;
string directory;
bool gammaCorrection;
/* Functions */
// Constructor, expects a filepath to a 3D model.
Model(string const & path, bool gamma = false) : gammaCorrection(gamma)
// constructor, expects a filepath to a 3D model.
Model(string const &path, bool gamma = false) : gammaCorrection(gamma)
{
this->loadModel(path);
loadModel(path);
}
// Draws the model, and thus all its meshes
// draws the model, and thus all its meshes
void Draw(Shader shader)
{
for(GLuint i = 0; i < this->meshes.size(); i++)
this->meshes[i].Draw(shader);
for(unsigned int i = 0; i < meshes.size(); i++)
meshes[i].Draw(shader);
}
private:
/* Functions */
// Loads a model with supported ASSIMP extensions from file and stores the resulting meshes in the meshes vector.
void loadModel(string path)
// loads a model with supported ASSIMP extensions from file and stores the resulting meshes in the meshes vector.
void loadModel(string const &path)
{
// Read file via ASSIMP
// read file via ASSIMP
Assimp::Importer importer;
const aiScene* scene = importer.ReadFile(path, aiProcess_Triangulate | aiProcess_FlipUVs | aiProcess_CalcTangentSpace);
// Check for errors
// check for errors
if(!scene || scene->mFlags & AI_SCENE_FLAGS_INCOMPLETE || !scene->mRootNode) // if is Not Zero
{
cout << "ERROR::ASSIMP:: " << importer.GetErrorString() << endl;
return;
}
// Retrieve the directory path of the filepath
this->directory = path.substr(0, path.find_last_of('/'));
// retrieve the directory path of the filepath
directory = path.substr(0, path.find_last_of('/'));
// Process ASSIMP's root node recursively
this->processNode(scene->mRootNode, scene);
// process ASSIMP's root node recursively
processNode(scene->mRootNode, scene);
}
// Processes a node in a recursive fashion. Processes each individual mesh located at the node and repeats this process on its children nodes (if any).
void processNode(aiNode* node, const aiScene* scene)
// processes a node in a recursive fashion. Processes each individual mesh located at the node and repeats this process on its children nodes (if any).
void processNode(aiNode *node, const aiScene *scene)
{
// Process each mesh located at the current node
for(GLuint i = 0; i < node->mNumMeshes; i++)
// process each mesh located at the current node
for(unsigned int i = 0; i < node->mNumMeshes; i++)
{
// The node object only contains indices to index the actual objects in the scene.
// The scene contains all the data, node is just to keep stuff organized (like relations between nodes).
aiMesh* mesh = scene->mMeshes[node->mMeshes[i]];
this->meshes.push_back(this->processMesh(mesh, scene));
// the node object only contains indices to index the actual objects in the scene.
// the scene contains all the data, node is just to keep stuff organized (like relations between nodes).
aiMesh* mesh = scene->mMeshes[node->mMeshes[i]];
meshes.push_back(processMesh(mesh, scene));
}
// After we've processed all of the meshes (if any) we then recursively process each of the children nodes
for(GLuint i = 0; i < node->mNumChildren; i++)
// after we've processed all of the meshes (if any) we then recursively process each of the children nodes
for(unsigned int i = 0; i < node->mNumChildren; i++)
{
this->processNode(node->mChildren[i], scene);
processNode(node->mChildren[i], scene);
}
}
Mesh processMesh(aiMesh* mesh, const aiScene* scene)
Mesh processMesh(aiMesh *mesh, const aiScene *scene)
{
// Data to fill
// data to fill
vector<Vertex> vertices;
vector<GLuint> indices;
vector<unsigned int> indices;
vector<Texture> textures;
// Walk through each of the mesh's vertices
for(GLuint i = 0; i < mesh->mNumVertices; i++)
for(unsigned int i = 0; i < mesh->mNumVertices; i++)
{
Vertex vertex;
glm::vec3 vector; // We declare a placeholder vector since assimp uses its own vector class that doesn't directly convert to glm's vec3 class so we transfer the data to this placeholder glm::vec3 first.
// Positions
glm::vec3 vector; // we declare a placeholder vector since assimp uses its own vector class that doesn't directly convert to glm's vec3 class so we transfer the data to this placeholder glm::vec3 first.
// positions
vector.x = mesh->mVertices[i].x;
vector.y = mesh->mVertices[i].y;
vector.z = mesh->mVertices[i].z;
vertex.Position = vector;
// Normals
// normals
vector.x = mesh->mNormals[i].x;
vector.y = mesh->mNormals[i].y;
vector.z = mesh->mNormals[i].z;
vertex.Normal = vector;
// Texture Coordinates
if(mesh->mTextureCoords[0]) // Does the mesh contain texture coordinates?
// texture coordinates
if(mesh->mTextureCoords[0]) // does the mesh contain texture coordinates?
{
glm::vec2 vec;
// A vertex can contain up to 8 different texture coordinates. We thus make the assumption that we won't
// a vertex can contain up to 8 different texture coordinates. We thus make the assumption that we won't
// use models where a vertex can have multiple texture coordinates so we always take the first set (0).
vec.x = mesh->mTextureCoords[0][i].x;
vec.y = mesh->mTextureCoords[0][i].y;
@@ -117,83 +119,83 @@ private:
}
else
vertex.TexCoords = glm::vec2(0.0f, 0.0f);
// Tangent
// tangent
vector.x = mesh->mTangents[i].x;
vector.y = mesh->mTangents[i].y;
vector.z = mesh->mTangents[i].z;
vertex.Tangent = vector;
// Bitangent
// bitangent
vector.x = mesh->mBitangents[i].x;
vector.y = mesh->mBitangents[i].y;
vector.z = mesh->mBitangents[i].z;
vertex.Bitangent = vector;
vertices.push_back(vertex);
}
// Now wak through each of the mesh's faces (a face is a mesh its triangle) and retrieve the corresponding vertex indices.
for(GLuint i = 0; i < mesh->mNumFaces; i++)
// now wak through each of the mesh's faces (a face is a mesh its triangle) and retrieve the corresponding vertex indices.
for(unsigned int i = 0; i < mesh->mNumFaces; i++)
{
aiFace face = mesh->mFaces[i];
// Retrieve all indices of the face and store them in the indices vector
for(GLuint j = 0; j < face.mNumIndices; j++)
// retrieve all indices of the face and store them in the indices vector
for(unsigned int j = 0; j < face.mNumIndices; j++)
indices.push_back(face.mIndices[j]);
}
// Process materials
// process materials
if(mesh->mMaterialIndex >= 0)
{
aiMaterial* material = scene->mMaterials[mesh->mMaterialIndex];
// We assume a convention for sampler names in the shaders. Each diffuse texture should be named
// we assume a convention for sampler names in the shaders. Each diffuse texture should be named
// as 'texture_diffuseN' where N is a sequential number ranging from 1 to MAX_SAMPLER_NUMBER.
// Same applies to other texture as the following list summarizes:
// Diffuse: texture_diffuseN
// Specular: texture_specularN
// Normal: texture_normalN
// diffuse: texture_diffuseN
// specular: texture_specularN
// normal: texture_normalN
// 1. Diffuse maps
vector<Texture> diffuseMaps = this->loadMaterialTextures(material, aiTextureType_DIFFUSE, "texture_diffuse");
// 1. diffuse maps
vector<Texture> diffuseMaps = loadMaterialTextures(material, aiTextureType_DIFFUSE, "texture_diffuse");
textures.insert(textures.end(), diffuseMaps.begin(), diffuseMaps.end());
// 2. Specular maps
vector<Texture> specularMaps = this->loadMaterialTextures(material, aiTextureType_SPECULAR, "texture_specular");
// 2. specular maps
vector<Texture> specularMaps = loadMaterialTextures(material, aiTextureType_SPECULAR, "texture_specular");
textures.insert(textures.end(), specularMaps.begin(), specularMaps.end());
// 3. Normal maps
std::vector<Texture> normalMaps = this->loadMaterialTextures(material, aiTextureType_HEIGHT, "texture_normal");
// 3. normal maps
std::vector<Texture> normalMaps = loadMaterialTextures(material, aiTextureType_HEIGHT, "texture_normal");
textures.insert(textures.end(), normalMaps.begin(), normalMaps.end());
// 4. Height maps
std::vector<Texture> heightMaps = this->loadMaterialTextures(material, aiTextureType_AMBIENT, "texture_height");
// 4. height maps
std::vector<Texture> heightMaps = loadMaterialTextures(material, aiTextureType_AMBIENT, "texture_height");
textures.insert(textures.end(), heightMaps.begin(), heightMaps.end());
}
// Return a mesh object created from the extracted mesh data
// return a mesh object created from the extracted mesh data
return Mesh(vertices, indices, textures);
}
// Checks all material textures of a given type and loads the textures if they're not loaded yet.
// The required info is returned as a Texture struct.
vector<Texture> loadMaterialTextures(aiMaterial* mat, aiTextureType type, string typeName)
// checks all material textures of a given type and loads the textures if they're not loaded yet.
// the required info is returned as a Texture struct.
vector<Texture> loadMaterialTextures(aiMaterial *mat, aiTextureType type, string typeName)
{
vector<Texture> textures;
for(GLuint i = 0; i < mat->GetTextureCount(type); i++)
for(unsigned int i = 0; i < mat->GetTextureCount(type); i++)
{
aiString str;
mat->GetTexture(type, i, &str);
// Check if texture was loaded before and if so, continue to next iteration: skip loading a new texture
GLboolean skip = false;
for(GLuint j = 0; j < textures_loaded.size(); j++)
// check if texture was loaded before and if so, continue to next iteration: skip loading a new texture
bool skip = false;
for(unsigned int j = 0; j < textures_loaded.size(); j++)
{
if(std::strcmp(textures_loaded[j].path.C_Str(), str.C_Str()) == 0)
{
textures.push_back(textures_loaded[j]);
skip = true; // A texture with the same filepath has already been loaded, continue to next one. (optimization)
skip = true; // a texture with the same filepath has already been loaded, continue to next one. (optimization)
break;
}
}
if(!skip)
{ // If texture hasn't been loaded already, load it
{ // if texture hasn't been loaded already, load it
Texture texture;
texture.id = TextureFromFile(str.C_Str(), this->directory);
texture.type = typeName;
texture.path = str;
textures.push_back(texture);
this->textures_loaded.push_back(texture); // Store it as texture loaded for entire model, to ensure we won't unnecesery load duplicate textures.
textures_loaded.push_back(texture); // store it as texture loaded for entire model, to ensure we won't unnecesery load duplicate textures.
}
}
return textures;
@@ -201,7 +203,7 @@ private:
};
unsigned int TextureFromFile(const char* path, string directory, bool gamma)
unsigned int TextureFromFile(const char *path, const string &directory, bool gamma)
{
string filename = string(path);
filename = directory + '/' + filename;
@@ -239,4 +241,5 @@ unsigned int TextureFromFile(const char* path, string directory, bool gamma)
}
return textureID;
}
}
#endif

View File

@@ -12,5 +12,5 @@ uniform mat4 projection;
void main()
{
TexCoords = aTexCoords;
gl_Position = projection * view * model * vec4(aPos, 1.0f);
gl_Position = projection * view * model * vec4(aPos, 1.0);
}

View File

@@ -1,6 +1,5 @@
#include <glad/glad.h>
#include <GLFW/glfw3.h>
#include <stb_image.h>
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
@@ -18,13 +17,18 @@ void mouse_callback(GLFWwindow* window, double xpos, double ypos);
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);
void processInput(GLFWwindow *window);
// settings
const unsigned int SCR_WIDTH = 800;
const unsigned int SCR_HEIGHT = 600;
// camera
Camera camera(glm::vec3(0.0f, 0.0f, 3.0f));
float lastX = 800.0f / 2.0;
float lastY = 600.0 / 2.0;
float lastX = SCR_WIDTH / 2.0f;
float lastY = SCR_HEIGHT / 2.0f;
bool firstMouse = true;
float deltaTime = 0.0f; // time between current frame and last frame
// timing
float deltaTime = 0.0f;
float lastFrame = 0.0f;
int main()
@@ -38,14 +42,14 @@ int main()
// glfw window creation
// --------------------
GLFWwindow* window = glfwCreateWindow(800, 600, "LearnOpenGL", NULL, NULL);
glfwMakeContextCurrent(window);
GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", NULL, NULL);
if (window == NULL)
{
std::cout << "Failed to create GLFW window" << std::endl;
glfwTerminate();
return -1;
}
glfwMakeContextCurrent(window);
glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
glfwSetCursorPosCallback(window, mouse_callback);
glfwSetScrollCallback(window, scroll_callback);
@@ -93,14 +97,14 @@ int main()
// render
// ------
glClearColor(0.2f, 0.3f, 0.3f, 1.0f);
glClearColor(0.05f, 0.05f, 0.05f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// don't forget to enable shader before setting uniforms
ourShader.use();
// view/projection transformations
glm::mat4 projection = glm::perspective(glm::radians(camera.Zoom), 800.0f / 600.0f, 0.1f, 100.0f);
glm::mat4 projection = glm::perspective(glm::radians(camera.Zoom), (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f);
glm::mat4 view = camera.GetViewMatrix();
ourShader.setMat4("projection", projection);
ourShader.setMat4("view", view);
@@ -132,7 +136,6 @@ void processInput(GLFWwindow *window)
if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
glfwSetWindowShouldClose(window, true);
float cameraSpeed = 2.5 * deltaTime;
if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS)
camera.ProcessKeyboard(FORWARD, deltaTime);
if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)
@@ -152,7 +155,6 @@ void framebuffer_size_callback(GLFWwindow* window, int width, int height)
glViewport(0, 0, width, height);
}
// glfw: whenever the mouse moves, this callback is called
// -------------------------------------------------------
void mouse_callback(GLFWwindow* window, double xpos, double ypos)