Code re-work instancing.

This commit is contained in:
Joey de Vries
2017-04-20 21:30:07 +02:00
parent 5693c59693
commit cd5f93211b
14 changed files with 654 additions and 506 deletions

View File

@@ -1,10 +1,9 @@
#version 330 core
in vec2 TexCoords;
out vec4 color;
out vec4 FragColor;
uniform sampler2D texture_diffuse1;
in vec3 fColor;
void main()
{
color = texture(texture_diffuse1, TexCoords);
FragColor = vec4(fColor, 1.0);
}

View File

@@ -1,15 +1,12 @@
#version 330 core
layout (location = 0) in vec3 position;
layout (location = 2) in vec2 texCoords;
layout (location = 3) in mat4 instanceMatrix;
layout (location = 0) in vec2 aPos;
layout (location = 1) in vec3 aColor;
layout (location = 2) in vec2 aOffset;
out vec2 TexCoords;
uniform mat4 projection;
uniform mat4 view;
out vec3 fColor;
void main()
{
gl_Position = projection * view * instanceMatrix * vec4(position, 1.0f);
TexCoords = texCoords;
fColor = aColor;
gl_Position = vec4(aPos + aOffset, 0.0, 1.0);
}

View File

@@ -1,248 +1,142 @@
// GLEW
#define GLEW_STATIC
#include <GL/glew.h>
// GLFW
#include <glad/glad.h>
#include <GLFW/glfw3.h>
// GL includes
#include <learnopengl/shader.h>
#include <learnopengl/camera.h>
#include <learnopengl/model.h>
// GLM Mathemtics
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>
#include <learnopengl/filesystem.h>
#include <learnopengl/shader.h>
// Properties
GLuint screenWidth = 800, screenHeight = 600;
#include <iostream>
// Function prototypes
void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode);
void mouse_callback(GLFWwindow* window, double xpos, double ypos);
void Do_Movement();
void framebuffer_size_callback(GLFWwindow* window, int width, int height);
// Camera
Camera camera(glm::vec3(0.0f, 0.0f, 155.0f));
bool keys[1024];
GLfloat lastX = 400, lastY = 300;
bool firstMouse = true;
// settings
const unsigned int SCR_WIDTH = 1280;
const unsigned int SCR_HEIGHT = 720;
GLfloat deltaTime = 0.0f;
GLfloat lastFrame = 0.0f;
// The MAIN function, from here we start our application and run our Game loop
int main()
{
// Init GLFW
// glfw: initialize and configure
// ------------------------------
glfwInit();
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
glfwWindowHint(GLFW_RESIZABLE, GL_FALSE);
GLFWwindow* window = glfwCreateWindow(screenWidth, screenHeight, "LearnOpenGL", nullptr, nullptr); // Windowed
// glfw window creation
// --------------------
GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", NULL, NULL);
glfwMakeContextCurrent(window);
if (window == NULL)
{
std::cout << "Failed to create GLFW window" << std::endl;
glfwTerminate();
return -1;
}
// Set the required callback functions
glfwSetKeyCallback(window, key_callback);
glfwSetCursorPosCallback(window, mouse_callback);
// glad: load all OpenGL function pointers
// ---------------------------------------
if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
{
std::cout << "Failed to initialize GLAD" << std::endl;
return -1;
}
// Options
glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);
// Initialize GLEW to setup the OpenGL Function pointers
glewExperimental = GL_TRUE;
glewInit();
// Define the viewport dimensions
glViewport(0, 0, screenWidth, screenHeight);
// Setup OpenGL options
// configure global opengl state
// -----------------------------
glEnable(GL_DEPTH_TEST);
// Setup and compile our shaders
Shader planetShader("planet.vs", "planet.frag");
Shader instanceShader("instanced_asteroids.vs", "instanced_asteroids.frag");
// build and compile shaders
// -------------------------
Shader shader("10.1.instancing.vs", "10.1.instancing.fs");
// Load models
Model rock(FileSystem::getPath("resources/objects/rock/rock.obj").c_str());
Model planet(FileSystem::getPath("resources/objects/planet/planet.obj").c_str());
// Set projection matrix
glm::mat4 projection = glm::perspective(45.0f, (GLfloat)screenWidth/(GLfloat)screenHeight, 1.0f, 10000.0f);
planetShader.Use();
glUniformMatrix4fv(glGetUniformLocation(planetShader.Program, "projection"), 1, GL_FALSE, glm::value_ptr(projection));
// Also of instance shader
instanceShader.Use();
glUniformMatrix4fv(glGetUniformLocation(instanceShader.Program, "projection"), 1, GL_FALSE, glm::value_ptr(projection));
// Generate a large list of semi-random model transformation matrices
GLuint amount = 100000;
glm::mat4* modelMatrices;
modelMatrices = new glm::mat4[amount];
srand(glfwGetTime()); // initialize random seed
GLfloat radius = 150.0f;
GLfloat offset = 25.0f;
for(GLuint i = 0; i < amount; i++)
// generate a list of 100 quad locations/translation-vectors
// ---------------------------------------------------------
glm::vec2 translations[100];
int index = 0;
float offset = 0.1f;
for (int y = -10; y < 10; y += 2)
{
glm::mat4 model;
// 1. Translation: Randomly displace along circle with radius 'radius' in range [-offset, offset]
GLfloat angle = (GLfloat)i / (GLfloat)amount * 360.0f;
GLfloat displacement = (rand() % (GLint)(2 * offset * 100)) / 100.0f - offset;
GLfloat x = sin(angle) * radius + displacement;
displacement = (rand() % (GLint)(2 * offset * 100)) / 100.0f - offset;
GLfloat y = -2.5f + displacement * 0.4f; // Keep height of asteroid field smaller compared to width of x and z
displacement = (rand() % (GLint)(2 * offset * 100)) / 100.0f - offset;
GLfloat z = cos(angle) * radius + displacement;
model = glm::translate(model, glm::vec3(x, y, z));
// 2. Scale: Scale between 0.05 and 0.25f
GLfloat scale = (rand() % 20) / 100.0f + 0.05;
model = glm::scale(model, glm::vec3(scale));
// 3. Rotation: add random rotation around a (semi)randomly picked rotation axis vector
GLfloat rotAngle = (rand() % 360);
model = glm::rotate(model, rotAngle, glm::vec3(0.4f, 0.6f, 0.8f));
// 4. Now add to list of matrices
modelMatrices[i] = model;
for (int x = -10; x < 10; x += 2)
{
glm::vec2 translation;
translation.x = (float)x / 10.0f + offset;
translation.y = (float)y / 10.0f + offset;
translations[index++] = translation;
}
}
// forward declare the buffer
GLuint buffer;
glGenBuffers(1, &buffer);
glBindBuffer(GL_ARRAY_BUFFER, buffer);
glBufferData(GL_ARRAY_BUFFER, amount * sizeof(glm::mat4), &modelMatrices[0], GL_STATIC_DRAW);
// store instance data in an array buffer
// --------------------------------------
unsigned int instanceVBO;
glGenBuffers(1, &instanceVBO);
glBindBuffer(GL_ARRAY_BUFFER, instanceVBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(glm::vec2) * 100, &translations[0], GL_STATIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, 0);
// Set transformation matrices as an instance vertex attribute (with divisor 1)
// NOTE: We're cheating a little by taking the, now publicly declared, VAO of the model's mesh(es) and adding new vertexAttribPointers
// Normally you'd want to do this in a more organized fashion, but for learning purposes this will do.
for(GLuint i = 0; i < rock.meshes.size(); i++)
// set up vertex data (and buffer(s)) and configure vertex attributes
// ------------------------------------------------------------------
float quadVertices[] = {
// positions // colors
-0.05f, 0.05f, 1.0f, 0.0f, 0.0f,
0.05f, -0.05f, 0.0f, 1.0f, 0.0f,
-0.05f, -0.05f, 0.0f, 0.0f, 1.0f,
-0.05f, 0.05f, 1.0f, 0.0f, 0.0f,
0.05f, -0.05f, 0.0f, 1.0f, 0.0f,
0.05f, 0.05f, 0.0f, 1.0f, 1.0f
};
unsigned int quadVAO, quadVBO;
glGenVertexArrays(1, &quadVAO);
glGenBuffers(1, &quadVBO);
glBindVertexArray(quadVAO);
glBindBuffer(GL_ARRAY_BUFFER, quadVBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(quadVertices), quadVertices, GL_STATIC_DRAW);
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (void*)0);
glEnableVertexAttribArray(1);
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 5 * sizeof(float), (void*)(2 * sizeof(float)));
// also set instance data
glEnableVertexAttribArray(2);
glBindBuffer(GL_ARRAY_BUFFER, instanceVBO); // this attribute comes from a different vertex buffer
glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 2 * sizeof(float), (void*)0);
glBindBuffer(GL_ARRAY_BUFFER, 0);
glVertexAttribDivisor(2, 1); // tell OpenGL this is an instanced vertex attribute.
// render loop
// -----------
while (!glfwWindowShouldClose(window))
{
GLuint VAO = rock.meshes[i].VAO;
glBindVertexArray(VAO);
// Set attribute pointers for matrix (4 times vec4)
glEnableVertexAttribArray(3);
glVertexAttribPointer(3, 4, GL_FLOAT, GL_FALSE, sizeof(glm::mat4), (GLvoid*)0);
glEnableVertexAttribArray(4);
glVertexAttribPointer(4, 4, GL_FLOAT, GL_FALSE, sizeof(glm::mat4), (GLvoid*)(sizeof(glm::vec4)));
glEnableVertexAttribArray(5);
glVertexAttribPointer(5, 4, GL_FLOAT, GL_FALSE, sizeof(glm::mat4), (GLvoid*)(2 * sizeof(glm::vec4)));
glEnableVertexAttribArray(6);
glVertexAttribPointer(6, 4, GL_FLOAT, GL_FALSE, sizeof(glm::mat4), (GLvoid*)(3 * sizeof(glm::vec4)));
glVertexAttribDivisor(3, 1);
glVertexAttribDivisor(4, 1);
glVertexAttribDivisor(5, 1);
glVertexAttribDivisor(6, 1);
glBindVertexArray(0);
}
// Game loop
while(!glfwWindowShouldClose(window))
{
// Set frame time
GLfloat currentFrame = glfwGetTime();
deltaTime = currentFrame - lastFrame;
lastFrame = currentFrame;
// Check and call events
glfwPollEvents();
Do_Movement();
// Clear buffers
glClearColor(0.03f, 0.03f, 0.03f, 1.0f);
// render
// ------
glClearColor(0.1f, 0.1f, 0.1f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// Add transformation matrices
planetShader.Use();
glUniformMatrix4fv(glGetUniformLocation(planetShader.Program, "view"), 1, GL_FALSE, glm::value_ptr(camera.GetViewMatrix()));
instanceShader.Use();
glUniformMatrix4fv(glGetUniformLocation(instanceShader.Program, "view"), 1, GL_FALSE, glm::value_ptr(camera.GetViewMatrix()));
// draw 100 instanced quads
shader.use();
glBindVertexArray(quadVAO);
glDrawArraysInstanced(GL_TRIANGLES, 0, 6, 100); // 100 triangles of 6 vertices each
glBindVertexArray(0);
// Draw Planet
planetShader.Use();
glm::mat4 model;
model = glm::translate(model, glm::vec3(0.0f, -5.0f, 0.0f));
model = glm::scale(model, glm::vec3(4.0f, 4.0f, 4.0f));
glUniformMatrix4fv(glGetUniformLocation(planetShader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
planet.Draw(planetShader);
// Draw meteorites
instanceShader.Use();
// NB: This could all be implemented as a method within the Model class, perhaps "DrawInstanced(const GLuint amount)"
glActiveTexture(GL_TEXTURE0); // Activate proper texture unit before binding
glUniform1i(glGetUniformLocation(instanceShader.Program, "texture_diffuse1"), 0); // Now set the sampler to the correct texture unit
glBindTexture(GL_TEXTURE_2D, rock.textures_loaded[0].id); // Note we also made the textures_loaded vector public (instead of private) from the model class.
for(GLuint i = 0; i < rock.meshes.size(); i++)
{
glBindVertexArray(rock.meshes[i].VAO);
glDrawElementsInstanced(GL_TRIANGLES, rock.meshes[i].indices.size(), GL_UNSIGNED_INT, 0, amount);
glBindVertexArray(0);
}
// reset our texture binding
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, 0);
// Swap the buffers
// glfw: swap buffers and poll IO events (keys pressed/released, mouse moved etc.)
// -------------------------------------------------------------------------------
glfwSwapBuffers(window);
glfwPollEvents();
}
delete[] modelMatrices;
// optional: de-allocate all resources once they've outlived their purpose:
// ------------------------------------------------------------------------
glDeleteVertexArrays(1, &quadVAO);
glDeleteBuffers(1, &quadVBO);
glfwTerminate();
return 0;
}
#pragma region "User input"
// Moves/alters the camera positions based on user input
void Do_Movement()
// glfw: whenever the window size changed (by OS or user resize) this callback function executes
// ---------------------------------------------------------------------------------------------
void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{
// Camera controls
if(keys[GLFW_KEY_W])
camera.ProcessKeyboard(FORWARD, deltaTime);
if(keys[GLFW_KEY_S])
camera.ProcessKeyboard(BACKWARD, deltaTime);
if(keys[GLFW_KEY_A])
camera.ProcessKeyboard(LEFT, deltaTime);
if(keys[GLFW_KEY_D])
camera.ProcessKeyboard(RIGHT, deltaTime);
}
// Is called whenever a key is pressed/released via GLFW
void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode)
{
if(key == GLFW_KEY_ESCAPE && action == GLFW_PRESS)
glfwSetWindowShouldClose(window, GL_TRUE);
if(action == GLFW_PRESS)
keys[key] = true;
else if(action == GLFW_RELEASE)
keys[key] = false;
}
void mouse_callback(GLFWwindow* window, double xpos, double ypos)
{
if(firstMouse)
{
lastX = xpos;
lastY = ypos;
firstMouse = false;
}
GLfloat xoffset = xpos - lastX;
GLfloat yoffset = lastY - ypos;
lastX = xpos;
lastY = ypos;
camera.ProcessMouseMovement(xoffset, yoffset);
}
#pragma endregion
// make sure the viewport matches the new window dimensions; note that width and
// height will be significantly larger than specified on retina displays.
glViewport(0, 0, width, height);
}

View File

@@ -1,10 +1,11 @@
#version 330 core
out vec4 FragColor;
in vec2 TexCoords;
out vec4 color;
uniform sampler2D texture_diffuse1;
void main()
{
color = texture(texture_diffuse1, TexCoords);
FragColor = texture(texture_diffuse1, TexCoords);
}

View File

@@ -0,0 +1,15 @@
#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 2) in vec2 aTexCoords;
out vec2 TexCoords;
uniform mat4 projection;
uniform mat4 view;
uniform mat4 model;
void main()
{
TexCoords = aTexCoords;
gl_Position = projection * view * model * vec4(aPos, 1.0f);
}

View File

@@ -0,0 +1,218 @@
#include <glad/glad.h>
#include <GLFW/glfw3.h>
#include <stb_image.h>
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>
#include <learnopengl/filesystem.h>
#include <learnopengl/shader.h>
#include <learnopengl/camera.h>
#include <learnopengl/model.h>
#include <iostream>
void framebuffer_size_callback(GLFWwindow* window, int width, int height);
void mouse_callback(GLFWwindow* window, double xpos, double ypos);
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);
void processInput(GLFWwindow *window);
// settings
const unsigned int SCR_WIDTH = 1280;
const unsigned int SCR_HEIGHT = 720;
// camera
Camera camera(glm::vec3(0.0f, 0.0f, 55.0f));
float lastX = (float)SCR_WIDTH / 2.0;
float lastY = (float)SCR_HEIGHT / 2.0;
bool firstMouse = true;
// timing
float deltaTime = 0.0f;
float lastFrame = 0.0f;
int main()
{
// glfw: initialize and configure
// ------------------------------
glfwInit();
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
// glfw window creation
// --------------------
GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", NULL, NULL);
glfwMakeContextCurrent(window);
if (window == NULL)
{
std::cout << "Failed to create GLFW window" << std::endl;
glfwTerminate();
return -1;
}
glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
glfwSetCursorPosCallback(window, mouse_callback);
glfwSetScrollCallback(window, scroll_callback);
// tell GLFW to capture our mouse
glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);
// glad: load all OpenGL function pointers
// ---------------------------------------
if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
{
std::cout << "Failed to initialize GLAD" << std::endl;
return -1;
}
// configure global opengl state
// -----------------------------
glEnable(GL_DEPTH_TEST);
// build and compile shaders
// -------------------------
Shader shader("10.2.instancing.vs", "10.2.instancing.fs");
// load models
// -----------
Model rock(FileSystem::getPath("resources/objects/rock/rock.obj"));
Model planet(FileSystem::getPath("resources/objects/planet/planet.obj"));
// generate a large list of semi-random model transformation matrices
// ------------------------------------------------------------------
unsigned int amount = 1000;
glm::mat4* modelMatrices;
modelMatrices = new glm::mat4[amount];
srand(glfwGetTime()); // initialize random seed
float radius = 50.0;
float offset = 2.5f;
for (unsigned int i = 0; i < amount; i++)
{
glm::mat4 model;
// 1. translation: displace along circle with 'radius' in range [-offset, offset]
float angle = (float)i / (float)amount * 360.0f;
float displacement = (rand() % (int)(2 * offset * 100)) / 100.0f - offset;
float x = sin(angle) * radius + displacement;
displacement = (rand() % (int)(2 * offset * 100)) / 100.0f - offset;
float y = displacement * 0.4f; // keep height of asteroid field smaller compared to width of x and z
displacement = (rand() % (int)(2 * offset * 100)) / 100.0f - offset;
float z = cos(angle) * radius + displacement;
model = glm::translate(model, glm::vec3(x, y, z));
// 2. scale: Scale between 0.05 and 0.25f
float scale = (rand() % 20) / 100.0f + 0.05;
model = glm::scale(model, glm::vec3(scale));
// 3. rotation: add random rotation around a (semi)randomly picked rotation axis vector
float rotAngle = (rand() % 360);
model = glm::rotate(model, rotAngle, glm::vec3(0.4f, 0.6f, 0.8f));
// 4. now add to list of matrices
modelMatrices[i] = model;
}
// render loop
// -----------
while (!glfwWindowShouldClose(window))
{
// per-frame time logic
// --------------------
float currentFrame = glfwGetTime();
deltaTime = currentFrame - lastFrame;
lastFrame = currentFrame;
// input
// -----
processInput(window);
// render
// ------
glClearColor(0.1f, 0.1f, 0.1f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// configure transformation matrices
glm::mat4 projection = glm::perspective(glm::radians(45.0f), (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 1000.0f);
glm::mat4 view = camera.GetViewMatrix();;
shader.use();
shader.setMat4("projection", projection);
shader.setMat4("view", view);
// draw planet
glm::mat4 model;
model = glm::translate(model, glm::vec3(0.0f, -3.0f, 0.0f));
model = glm::scale(model, glm::vec3(4.0f, 4.0f, 4.0f));
shader.setMat4("model", model);
planet.Draw(shader);
// draw meteorites
for (unsigned int i = 0; i < amount; i++)
{
shader.setMat4("model", modelMatrices[i]);
rock.Draw(shader);
}
// glfw: swap buffers and poll IO events (keys pressed/released, mouse moved etc.)
// -------------------------------------------------------------------------------
glfwSwapBuffers(window);
glfwPollEvents();
}
glfwTerminate();
return 0;
}
// process all input: query GLFW whether relevant keys are pressed/released this frame and react accordingly
// ---------------------------------------------------------------------------------------------------------
void processInput(GLFWwindow *window)
{
if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
glfwSetWindowShouldClose(window, true);
float cameraSpeed = 2.5 * deltaTime;
if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS)
camera.ProcessKeyboard(FORWARD, deltaTime);
if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)
camera.ProcessKeyboard(BACKWARD, deltaTime);
if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS)
camera.ProcessKeyboard(LEFT, deltaTime);
if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS)
camera.ProcessKeyboard(RIGHT, deltaTime);
}
// glfw: whenever the window size changed (by OS or user resize) this callback function executes
// ---------------------------------------------------------------------------------------------
void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{
// make sure the viewport matches the new window dimensions; note that width and
// height will be significantly larger than specified on retina displays.
glViewport(0, 0, width, height);
}
// glfw: whenever the mouse moves, this callback is called
// -------------------------------------------------------
void mouse_callback(GLFWwindow* window, double xpos, double ypos)
{
if (firstMouse)
{
lastX = xpos;
lastY = ypos;
firstMouse = false;
}
float xoffset = xpos - lastX;
float yoffset = lastY - ypos; // reversed since y-coordinates go from bottom to top
lastX = xpos;
lastY = ypos;
camera.ProcessMouseMovement(xoffset, yoffset);
}
// glfw: whenever the mouse scroll wheel scrolls, this callback is called
// ----------------------------------------------------------------------
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
{
camera.ProcessMouseScroll(yoffset);
}

View File

@@ -1,15 +0,0 @@
#version 330 core
layout (location = 0) in vec3 position;
layout (location = 2) in vec2 texCoords;
layout (location = 3) in mat4 instanceMatrix;
out vec2 TexCoords;
uniform mat4 projection;
uniform mat4 view;
void main()
{
gl_Position = projection * view * instanceMatrix * vec4(position, 1.0f);
TexCoords = texCoords;
}

View File

@@ -1,15 +0,0 @@
#version 330 core
layout (location = 0) in vec3 position;
layout (location = 2) in vec2 texCoords;
out vec2 TexCoords;
uniform mat4 projection;
uniform mat4 view;
uniform mat4 model;
void main()
{
gl_Position = projection * view * model * vec4(position, 1.0f);
TexCoords = texCoords;
}

View File

@@ -1,248 +0,0 @@
// GLEW
#define GLEW_STATIC
#include <GL/glew.h>
// GLFW
#include <GLFW/glfw3.h>
// GL includes
#include <learnopengl/shader.h>
#include <learnopengl/camera.h>
#include <learnopengl/model.h>
// GLM Mathemtics
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>
#include <learnopengl/filesystem.h>
// Properties
GLuint screenWidth = 800, screenHeight = 600;
// Function prototypes
void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode);
void mouse_callback(GLFWwindow* window, double xpos, double ypos);
void Do_Movement();
// Camera
Camera camera(glm::vec3(0.0f, 0.0f, 155.0f));
bool keys[1024];
GLfloat lastX = 400, lastY = 300;
bool firstMouse = true;
GLfloat deltaTime = 0.0f;
GLfloat lastFrame = 0.0f;
// The MAIN function, from here we start our application and run our Game loop
int main()
{
// Init GLFW
glfwInit();
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
glfwWindowHint(GLFW_RESIZABLE, GL_FALSE);
GLFWwindow* window = glfwCreateWindow(screenWidth, screenHeight, "LearnOpenGL", nullptr, nullptr); // Windowed
glfwMakeContextCurrent(window);
// Set the required callback functions
glfwSetKeyCallback(window, key_callback);
glfwSetCursorPosCallback(window, mouse_callback);
// Options
glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);
// Initialize GLEW to setup the OpenGL Function pointers
glewExperimental = GL_TRUE;
glewInit();
// Define the viewport dimensions
glViewport(0, 0, screenWidth, screenHeight);
// Setup OpenGL options
glEnable(GL_DEPTH_TEST);
// Setup and compile our shaders
Shader planetShader("planet.vs", "planet.frag");
Shader instanceShader("instanced_asteroids.vs", "instanced_asteroids.frag");
// Load models
Model rock(FileSystem::getPath("resources/objects/rock/rock.obj").c_str());
Model planet(FileSystem::getPath("resources/objects/planet/planet.obj").c_str());
// Set projection matrix
glm::mat4 projection = glm::perspective(45.0f, (GLfloat)screenWidth/(GLfloat)screenHeight, 1.0f, 10000.0f);
planetShader.Use();
glUniformMatrix4fv(glGetUniformLocation(planetShader.Program, "projection"), 1, GL_FALSE, glm::value_ptr(projection));
// Also of instance shader
instanceShader.Use();
glUniformMatrix4fv(glGetUniformLocation(instanceShader.Program, "projection"), 1, GL_FALSE, glm::value_ptr(projection));
// Generate a large list of semi-random model transformation matrices
GLuint amount = 100000;
glm::mat4* modelMatrices;
modelMatrices = new glm::mat4[amount];
srand(glfwGetTime()); // initialize random seed
GLfloat radius = 150.0f;
GLfloat offset = 25.0f;
for(GLuint i = 0; i < amount; i++)
{
glm::mat4 model;
// 1. Translation: Randomly displace along circle with radius 'radius' in range [-offset, offset]
GLfloat angle = (GLfloat)i / (GLfloat)amount * 360.0f;
GLfloat displacement = (rand() % (GLint)(2 * offset * 100)) / 100.0f - offset;
GLfloat x = sin(angle) * radius + displacement;
displacement = (rand() % (GLint)(2 * offset * 100)) / 100.0f - offset;
GLfloat y = -2.5f + displacement * 0.4f; // Keep height of asteroid field smaller compared to width of x and z
displacement = (rand() % (GLint)(2 * offset * 100)) / 100.0f - offset;
GLfloat z = cos(angle) * radius + displacement;
model = glm::translate(model, glm::vec3(x, y, z));
// 2. Scale: Scale between 0.05 and 0.25f
GLfloat scale = (rand() % 20) / 100.0f + 0.05;
model = glm::scale(model, glm::vec3(scale));
// 3. Rotation: add random rotation around a (semi)randomly picked rotation axis vector
GLfloat rotAngle = (rand() % 360);
model = glm::rotate(model, rotAngle, glm::vec3(0.4f, 0.6f, 0.8f));
// 4. Now add to list of matrices
modelMatrices[i] = model;
}
// forward declare the buffer
GLuint buffer;
glGenBuffers(1, &buffer);
glBindBuffer(GL_ARRAY_BUFFER, buffer);
glBufferData(GL_ARRAY_BUFFER, amount * sizeof(glm::mat4), &modelMatrices[0], GL_STATIC_DRAW);
// Set transformation matrices as an instance vertex attribute (with divisor 1)
// NOTE: We're cheating a little by taking the, now publicly declared, VAO of the model's mesh(es) and adding new vertexAttribPointers
// Normally you'd want to do this in a more organized fashion, but for learning purposes this will do.
for(GLuint i = 0; i < rock.meshes.size(); i++)
{
GLuint VAO = rock.meshes[i].VAO;
glBindVertexArray(VAO);
// Set attribute pointers for matrix (4 times vec4)
glEnableVertexAttribArray(3);
glVertexAttribPointer(3, 4, GL_FLOAT, GL_FALSE, sizeof(glm::mat4), (GLvoid*)0);
glEnableVertexAttribArray(4);
glVertexAttribPointer(4, 4, GL_FLOAT, GL_FALSE, sizeof(glm::mat4), (GLvoid*)(sizeof(glm::vec4)));
glEnableVertexAttribArray(5);
glVertexAttribPointer(5, 4, GL_FLOAT, GL_FALSE, sizeof(glm::mat4), (GLvoid*)(2 * sizeof(glm::vec4)));
glEnableVertexAttribArray(6);
glVertexAttribPointer(6, 4, GL_FLOAT, GL_FALSE, sizeof(glm::mat4), (GLvoid*)(3 * sizeof(glm::vec4)));
glVertexAttribDivisor(3, 1);
glVertexAttribDivisor(4, 1);
glVertexAttribDivisor(5, 1);
glVertexAttribDivisor(6, 1);
glBindVertexArray(0);
}
// Game loop
while(!glfwWindowShouldClose(window))
{
// Set frame time
GLfloat currentFrame = glfwGetTime();
deltaTime = currentFrame - lastFrame;
lastFrame = currentFrame;
// Check and call events
glfwPollEvents();
Do_Movement();
// Clear buffers
glClearColor(0.03f, 0.03f, 0.03f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// Add transformation matrices
planetShader.Use();
glUniformMatrix4fv(glGetUniformLocation(planetShader.Program, "view"), 1, GL_FALSE, glm::value_ptr(camera.GetViewMatrix()));
instanceShader.Use();
glUniformMatrix4fv(glGetUniformLocation(instanceShader.Program, "view"), 1, GL_FALSE, glm::value_ptr(camera.GetViewMatrix()));
// Draw Planet
planetShader.Use();
glm::mat4 model;
model = glm::translate(model, glm::vec3(0.0f, -5.0f, 0.0f));
model = glm::scale(model, glm::vec3(4.0f, 4.0f, 4.0f));
glUniformMatrix4fv(glGetUniformLocation(planetShader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
planet.Draw(planetShader);
// Draw meteorites
instanceShader.Use();
// NB: This could all be implemented as a method within the Model class, perhaps "DrawInstanced(const GLuint amount)"
glActiveTexture(GL_TEXTURE0); // Activate proper texture unit before binding
glUniform1i(glGetUniformLocation(instanceShader.Program, "texture_diffuse1"), 0); // Now set the sampler to the correct texture unit
glBindTexture(GL_TEXTURE_2D, rock.textures_loaded[0].id); // Note we also made the textures_loaded vector public (instead of private) from the model class.
for(GLuint i = 0; i < rock.meshes.size(); i++)
{
glBindVertexArray(rock.meshes[i].VAO);
glDrawElementsInstanced(GL_TRIANGLES, rock.meshes[i].indices.size(), GL_UNSIGNED_INT, 0, amount);
glBindVertexArray(0);
}
// reset our texture binding
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, 0);
// Swap the buffers
glfwSwapBuffers(window);
}
delete[] modelMatrices;
glfwTerminate();
return 0;
}
#pragma region "User input"
// Moves/alters the camera positions based on user input
void Do_Movement()
{
// Camera controls
if(keys[GLFW_KEY_W])
camera.ProcessKeyboard(FORWARD, deltaTime);
if(keys[GLFW_KEY_S])
camera.ProcessKeyboard(BACKWARD, deltaTime);
if(keys[GLFW_KEY_A])
camera.ProcessKeyboard(LEFT, deltaTime);
if(keys[GLFW_KEY_D])
camera.ProcessKeyboard(RIGHT, deltaTime);
}
// Is called whenever a key is pressed/released via GLFW
void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode)
{
if(key == GLFW_KEY_ESCAPE && action == GLFW_PRESS)
glfwSetWindowShouldClose(window, GL_TRUE);
if(action == GLFW_PRESS)
keys[key] = true;
else if(action == GLFW_RELEASE)
keys[key] = false;
}
void mouse_callback(GLFWwindow* window, double xpos, double ypos)
{
if(firstMouse)
{
lastX = xpos;
lastY = ypos;
firstMouse = false;
}
GLfloat xoffset = xpos - lastX;
GLfloat yoffset = lastY - ypos;
lastX = xpos;
lastY = ypos;
camera.ProcessMouseMovement(xoffset, yoffset);
}
#pragma endregion

View File

@@ -1,10 +1,11 @@
#version 330 core
out vec4 FragColor;
in vec2 TexCoords;
out vec4 color;
uniform sampler2D texture_diffuse1;
void main()
{
color = texture(texture_diffuse1, TexCoords);
FragColor = texture(texture_diffuse1, TexCoords);
}

View File

@@ -0,0 +1,15 @@
#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 2) in vec2 aTexCoords;
layout (location = 3) in mat4 aInstanceMatrix;
out vec2 TexCoords;
uniform mat4 projection;
uniform mat4 view;
void main()
{
TexCoords = aTexCoords;
gl_Position = projection * view * aInstanceMatrix * vec4(aPos, 1.0f);
}

View File

@@ -0,0 +1,11 @@
#version 330 core
out vec4 FragColor;
in vec2 TexCoords;
uniform sampler2D texture_diffuse1;
void main()
{
FragColor = texture(texture_diffuse1, TexCoords);
}

View File

@@ -0,0 +1,15 @@
#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 2) in vec2 aTexCoords;
out vec2 TexCoords;
uniform mat4 projection;
uniform mat4 view;
uniform mat4 model;
void main()
{
TexCoords = aTexCoords;
gl_Position = projection * view * model * vec4(aPos, 1.0f);
}

View File

@@ -0,0 +1,260 @@
#include <glad/glad.h>
#include <GLFW/glfw3.h>
#include <stb_image.h>
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>
#include <learnopengl/filesystem.h>
#include <learnopengl/shader.h>
#include <learnopengl/camera.h>
#include <learnopengl/model.h>
#include <iostream>
void framebuffer_size_callback(GLFWwindow* window, int width, int height);
void mouse_callback(GLFWwindow* window, double xpos, double ypos);
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);
void processInput(GLFWwindow *window);
// settings
const unsigned int SCR_WIDTH = 1280;
const unsigned int SCR_HEIGHT = 720;
// camera
Camera camera(glm::vec3(0.0f, 0.0f, 155.0f));
float lastX = (float)SCR_WIDTH / 2.0;
float lastY = (float)SCR_HEIGHT / 2.0;
bool firstMouse = true;
// timing
float deltaTime = 0.0f;
float lastFrame = 0.0f;
int main()
{
// glfw: initialize and configure
// ------------------------------
glfwInit();
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
// glfw window creation
// --------------------
GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", NULL, NULL);
glfwMakeContextCurrent(window);
if (window == NULL)
{
std::cout << "Failed to create GLFW window" << std::endl;
glfwTerminate();
return -1;
}
glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
glfwSetCursorPosCallback(window, mouse_callback);
glfwSetScrollCallback(window, scroll_callback);
// tell GLFW to capture our mouse
glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);
// glad: load all OpenGL function pointers
// ---------------------------------------
if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
{
std::cout << "Failed to initialize GLAD" << std::endl;
return -1;
}
// configure global opengl state
// -----------------------------
glEnable(GL_DEPTH_TEST);
// build and compile shaders
// -------------------------
Shader asteroidShader("10.3.asteroids.vs", "10.3.asteroids.fs");
Shader planetShader("10.3.planet.vs", "10.3.planet.fs");
// load models
// -----------
Model rock(FileSystem::getPath("resources/objects/rock/rock.obj"));
Model planet(FileSystem::getPath("resources/objects/planet/planet.obj"));
// generate a large list of semi-random model transformation matrices
// ------------------------------------------------------------------
unsigned int amount = 100000;
glm::mat4* modelMatrices;
modelMatrices = new glm::mat4[amount];
srand(glfwGetTime()); // initialize random seed
float radius = 150.0;
float offset = 25.0f;
for (unsigned int i = 0; i < amount; i++)
{
glm::mat4 model;
// 1. translation: displace along circle with 'radius' in range [-offset, offset]
float angle = (float)i / (float)amount * 360.0f;
float displacement = (rand() % (int)(2 * offset * 100)) / 100.0f - offset;
float x = sin(angle) * radius + displacement;
displacement = (rand() % (int)(2 * offset * 100)) / 100.0f - offset;
float y = displacement * 0.4f; // keep height of asteroid field smaller compared to width of x and z
displacement = (rand() % (int)(2 * offset * 100)) / 100.0f - offset;
float z = cos(angle) * radius + displacement;
model = glm::translate(model, glm::vec3(x, y, z));
// 2. scale: Scale between 0.05 and 0.25f
float scale = (rand() % 20) / 100.0f + 0.05;
model = glm::scale(model, glm::vec3(scale));
// 3. rotation: add random rotation around a (semi)randomly picked rotation axis vector
float rotAngle = (rand() % 360);
model = glm::rotate(model, rotAngle, glm::vec3(0.4f, 0.6f, 0.8f));
// 4. now add to list of matrices
modelMatrices[i] = model;
}
// configure instanced array
// -------------------------
unsigned int buffer;
glGenBuffers(1, &buffer);
glBindBuffer(GL_ARRAY_BUFFER, buffer);
glBufferData(GL_ARRAY_BUFFER, amount * sizeof(glm::mat4), &modelMatrices[0], GL_STATIC_DRAW);
// Set transformation matrices as an instance vertex attribute (with divisor 1)
// note: we're cheating a little by taking the, now publicly declared, VAO of the model's mesh(es) and adding new vertexAttribPointers
// normally you'd want to do this in a more organized fashion, but for learning purposes this will do.
// -----------------------------------------------------------------------------------------------------------------------------------
for (unsigned int i = 0; i < rock.meshes.size(); i++)
{
unsigned int VAO = rock.meshes[i].VAO;
glBindVertexArray(VAO);
// Set attribute pointers for matrix (4 times vec4)
glEnableVertexAttribArray(3);
glVertexAttribPointer(3, 4, GL_FLOAT, GL_FALSE, sizeof(glm::mat4), (void*)0);
glEnableVertexAttribArray(4);
glVertexAttribPointer(4, 4, GL_FLOAT, GL_FALSE, sizeof(glm::mat4), (void*)(sizeof(glm::vec4)));
glEnableVertexAttribArray(5);
glVertexAttribPointer(5, 4, GL_FLOAT, GL_FALSE, sizeof(glm::mat4), (void*)(2 * sizeof(glm::vec4)));
glEnableVertexAttribArray(6);
glVertexAttribPointer(6, 4, GL_FLOAT, GL_FALSE, sizeof(glm::mat4), (void*)(3 * sizeof(glm::vec4)));
glVertexAttribDivisor(3, 1);
glVertexAttribDivisor(4, 1);
glVertexAttribDivisor(5, 1);
glVertexAttribDivisor(6, 1);
glBindVertexArray(0);
}
// render loop
// -----------
while (!glfwWindowShouldClose(window))
{
// per-frame time logic
// --------------------
float currentFrame = glfwGetTime();
deltaTime = currentFrame - lastFrame;
lastFrame = currentFrame;
// input
// -----
processInput(window);
// render
// ------
glClearColor(0.1f, 0.1f, 0.1f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// configure transformation matrices
glm::mat4 projection = glm::perspective(glm::radians(45.0f), (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 1000.0f);
glm::mat4 view = camera.GetViewMatrix();
asteroidShader.use();
asteroidShader.setMat4("projection", projection);
asteroidShader.setMat4("view", view);
planetShader.use();
planetShader.setMat4("projection", projection);
planetShader.setMat4("view", view);
// draw planet
glm::mat4 model;
model = glm::translate(model, glm::vec3(0.0f, -3.0f, 0.0f));
model = glm::scale(model, glm::vec3(4.0f, 4.0f, 4.0f));
planetShader.setMat4("model", model);
planet.Draw(planetShader);
// draw meteorites
asteroidShader.use();
asteroidShader.setInt("texture_diffuse1", 0);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, rock.textures_loaded[0].id); // note: we also made the textures_loaded vector public (instead of private) from the model class.
for (unsigned int i = 0; i < rock.meshes.size(); i++)
{
glBindVertexArray(rock.meshes[i].VAO);
glDrawElementsInstanced(GL_TRIANGLES, rock.meshes[i].indices.size(), GL_UNSIGNED_INT, 0, amount);
glBindVertexArray(0);
}
// glfw: swap buffers and poll IO events (keys pressed/released, mouse moved etc.)
// -------------------------------------------------------------------------------
glfwSwapBuffers(window);
glfwPollEvents();
}
glfwTerminate();
return 0;
}
// process all input: query GLFW whether relevant keys are pressed/released this frame and react accordingly
// ---------------------------------------------------------------------------------------------------------
void processInput(GLFWwindow *window)
{
if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
glfwSetWindowShouldClose(window, true);
float cameraSpeed = 2.5 * deltaTime;
if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS)
camera.ProcessKeyboard(FORWARD, deltaTime);
if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)
camera.ProcessKeyboard(BACKWARD, deltaTime);
if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS)
camera.ProcessKeyboard(LEFT, deltaTime);
if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS)
camera.ProcessKeyboard(RIGHT, deltaTime);
}
// glfw: whenever the window size changed (by OS or user resize) this callback function executes
// ---------------------------------------------------------------------------------------------
void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{
// make sure the viewport matches the new window dimensions; note that width and
// height will be significantly larger than specified on retina displays.
glViewport(0, 0, width, height);
}
// glfw: whenever the mouse moves, this callback is called
// -------------------------------------------------------
void mouse_callback(GLFWwindow* window, double xpos, double ypos)
{
if (firstMouse)
{
lastX = xpos;
lastY = ypos;
firstMouse = false;
}
float xoffset = xpos - lastX;
float yoffset = lastY - ypos; // reversed since y-coordinates go from bottom to top
lastX = xpos;
lastY = ypos;
camera.ProcessMouseMovement(xoffset, yoffset);
}
// glfw: whenever the mouse scroll wheel scrolls, this callback is called
// ----------------------------------------------------------------------
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
{
camera.ProcessMouseScroll(yoffset);
}