mirror of
https://github.com/JoeyDeVries/LearnOpenGL.git
synced 2026-01-02 04:37:54 +08:00
Code re-work: advanced lighting.
This commit is contained in:
@@ -132,14 +132,18 @@ set(4.advanced_opengl
|
||||
set(5.advanced_lighting
|
||||
1.advanced_lighting
|
||||
2.gamma_correction
|
||||
3.1.shadow_mapping
|
||||
3.2.point_shadows
|
||||
# 3.3.csm
|
||||
3.1.1.shadow_mapping_depth
|
||||
3.1.2.shadow_mapping_base
|
||||
3.1.3.shadow_mapping
|
||||
3.2.1.point_shadows
|
||||
3.2.2.point_shadows_soft
|
||||
4.normal_mapping
|
||||
5.parallax_mapping
|
||||
5.1.parallax_mapping
|
||||
5.2.parallax_occlusion_mapping
|
||||
6.hdr
|
||||
7.bloom
|
||||
8.deferred_shading
|
||||
8.1.deferred_shading
|
||||
8.2.deferred_shading_volumes
|
||||
9.ssao
|
||||
)
|
||||
|
||||
|
||||
@@ -15,14 +15,14 @@ uniform bool blinn;
|
||||
void main()
|
||||
{
|
||||
vec3 color = texture(floorTexture, fs_in.TexCoords).rgb;
|
||||
// Ambient
|
||||
// ambient
|
||||
vec3 ambient = 0.05 * color;
|
||||
// Diffuse
|
||||
// diffuse
|
||||
vec3 lightDir = normalize(lightPos - fs_in.FragPos);
|
||||
vec3 normal = normalize(fs_in.Normal);
|
||||
float diff = max(dot(lightDir, normal), 0.0);
|
||||
vec3 diffuse = diff * color;
|
||||
// Specular
|
||||
// specular
|
||||
vec3 viewDir = normalize(viewPos - fs_in.FragPos);
|
||||
vec3 reflectDir = reflect(-lightDir, normal);
|
||||
float spec = 0.0;
|
||||
@@ -37,5 +37,5 @@ void main()
|
||||
spec = pow(max(dot(viewDir, reflectDir), 0.0), 8.0);
|
||||
}
|
||||
vec3 specular = vec3(0.3) * spec; // assuming bright white light color
|
||||
FragColor = vec4(ambient + diffuse + specular, 1.0f);
|
||||
FragColor = vec4(ambient + diffuse + specular, 1.0);
|
||||
}
|
||||
@@ -0,0 +1,22 @@
|
||||
#version 330 core
|
||||
layout (location = 0) in vec3 aPos;
|
||||
layout (location = 1) in vec3 aNormal;
|
||||
layout (location = 2) in vec2 aTexCoords;
|
||||
|
||||
// Declare an interface block; see 'Advanced GLSL' for what these are.
|
||||
out VS_OUT {
|
||||
vec3 FragPos;
|
||||
vec3 Normal;
|
||||
vec2 TexCoords;
|
||||
} vs_out;
|
||||
|
||||
uniform mat4 projection;
|
||||
uniform mat4 view;
|
||||
|
||||
void main()
|
||||
{
|
||||
vs_out.FragPos = aPos;
|
||||
vs_out.Normal = aNormal;
|
||||
vs_out.TexCoords = aTexCoords;
|
||||
gl_Position = projection * view * vec4(aPos, 1.0);
|
||||
}
|
||||
@@ -1,237 +1,276 @@
|
||||
// GLEW
|
||||
#define GLEW_STATIC
|
||||
#include <GL/glew.h>
|
||||
|
||||
// GLFW
|
||||
#include <glad/glad.h>
|
||||
#include <GLFW/glfw3.h>
|
||||
#include <stb_image.h>
|
||||
|
||||
// GL includes
|
||||
#include <learnopengl/shader.h>
|
||||
#include <learnopengl/camera.h>
|
||||
|
||||
// GLM Mathemtics
|
||||
#include <glm/glm.hpp>
|
||||
#include <glm/gtc/matrix_transform.hpp>
|
||||
#include <glm/gtc/type_ptr.hpp>
|
||||
|
||||
// Other Libs
|
||||
#include <SOIL.h>
|
||||
#include <learnopengl/filesystem.h>
|
||||
#include <learnopengl/shader_m.h>
|
||||
#include <learnopengl/camera.h>
|
||||
#include <learnopengl/model.h>
|
||||
|
||||
// Properties
|
||||
const GLuint SCR_WIDTH = 800, SCR_HEIGHT = 600;
|
||||
#include <iostream>
|
||||
|
||||
// Function prototypes
|
||||
void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode);
|
||||
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);
|
||||
void framebuffer_size_callback(GLFWwindow* window, int width, int height);
|
||||
void mouse_callback(GLFWwindow* window, double xpos, double ypos);
|
||||
void Do_Movement();
|
||||
GLuint loadTexture(GLchar const * path);
|
||||
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);
|
||||
void processInput(GLFWwindow *window);
|
||||
unsigned int loadTexture(const char *path);
|
||||
|
||||
// Camera
|
||||
// settings
|
||||
const unsigned int SCR_WIDTH = 1280;
|
||||
const unsigned int SCR_HEIGHT = 720;
|
||||
bool blinn = false;
|
||||
bool blinnKeyPressed = false;
|
||||
|
||||
// camera
|
||||
Camera camera(glm::vec3(0.0f, 0.0f, 3.0f));
|
||||
float lastX = (float)SCR_WIDTH / 2.0;
|
||||
float lastY = (float)SCR_HEIGHT / 2.0;
|
||||
bool firstMouse = true;
|
||||
|
||||
// Delta
|
||||
GLfloat deltaTime = 0.0f;
|
||||
GLfloat lastFrame = 0.0f;
|
||||
// timing
|
||||
float deltaTime = 0.0f;
|
||||
float lastFrame = 0.0f;
|
||||
|
||||
// Options
|
||||
GLboolean blinn = false;
|
||||
|
||||
// The MAIN function, from here we start our application and run our Game loop
|
||||
int main()
|
||||
{
|
||||
// Init GLFW
|
||||
// glfw: initialize and configure
|
||||
// ------------------------------
|
||||
glfwInit();
|
||||
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
|
||||
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
|
||||
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
|
||||
glfwWindowHint(GLFW_RESIZABLE, GL_FALSE);
|
||||
|
||||
GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", nullptr, nullptr); // Windowed
|
||||
// glfw window creation
|
||||
// --------------------
|
||||
GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", NULL, NULL);
|
||||
glfwMakeContextCurrent(window);
|
||||
|
||||
// Set the required callback functions
|
||||
glfwSetKeyCallback(window, key_callback);
|
||||
if (window == NULL)
|
||||
{
|
||||
std::cout << "Failed to create GLFW window" << std::endl;
|
||||
glfwTerminate();
|
||||
return -1;
|
||||
}
|
||||
glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
|
||||
glfwSetCursorPosCallback(window, mouse_callback);
|
||||
glfwSetScrollCallback(window, scroll_callback);
|
||||
|
||||
// Options
|
||||
// tell GLFW to capture our mouse
|
||||
glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);
|
||||
|
||||
// Initialize GLEW to setup the OpenGL Function pointers
|
||||
glewExperimental = GL_TRUE;
|
||||
glewInit();
|
||||
// glad: load all OpenGL function pointers
|
||||
// ---------------------------------------
|
||||
if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
|
||||
{
|
||||
std::cout << "Failed to initialize GLAD" << std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
// Define the viewport dimensions
|
||||
glViewport(0, 0, SCR_WIDTH, SCR_HEIGHT);
|
||||
|
||||
// Setup some OpenGL options
|
||||
// configure global opengl state
|
||||
// -----------------------------
|
||||
glEnable(GL_DEPTH_TEST);
|
||||
glEnable(GL_BLEND);
|
||||
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
|
||||
|
||||
// Setup and compile our shaders
|
||||
Shader shader("advanced_lighting.vs", "advanced_lighting.frag");
|
||||
// build and compile shaders
|
||||
// -------------------------
|
||||
Shader shader("1.advanced_lighting.vs", "1.advanced_lighting.fs");
|
||||
|
||||
GLfloat planeVertices[] = {
|
||||
// Positions // Normals // Texture Coords
|
||||
8.0f, -0.5f, 8.0f, 0.0f, 1.0f, 0.0f, 5.0f, 0.0f,
|
||||
-8.0f, -0.5f, 8.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f,
|
||||
-8.0f, -0.5f, -8.0f, 0.0f, 1.0f, 0.0f, 0.0f, 5.0f,
|
||||
// set up vertex data (and buffer(s)) and configure vertex attributes
|
||||
// ------------------------------------------------------------------
|
||||
float planeVertices[] = {
|
||||
// positions // normals // texcoords
|
||||
10.0f, -0.5f, 10.0f, 0.0f, 1.0f, 0.0f, 10.0f, 0.0f,
|
||||
-10.0f, -0.5f, 10.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f,
|
||||
-10.0f, -0.5f, -10.0f, 0.0f, 1.0f, 0.0f, 0.0f, 10.0f,
|
||||
|
||||
8.0f, -0.5f, 8.0f, 0.0f, 1.0f, 0.0f, 5.0f, 0.0f,
|
||||
-8.0f, -0.5f, -8.0f, 0.0f, 1.0f, 0.0f, 0.0f, 5.0f,
|
||||
8.0f, -0.5f, -8.0f, 0.0f, 1.0f, 0.0f, 5.0f, 5.0f
|
||||
10.0f, -0.5f, 10.0f, 0.0f, 1.0f, 0.0f, 10.0f, 0.0f,
|
||||
-10.0f, -0.5f, -10.0f, 0.0f, 1.0f, 0.0f, 0.0f, 10.0f,
|
||||
10.0f, -0.5f, -10.0f, 0.0f, 1.0f, 0.0f, 10.0f, 10.0f
|
||||
};
|
||||
// Setup plane VAO
|
||||
GLuint planeVAO, planeVBO;
|
||||
// plane VAO
|
||||
unsigned int planeVAO, planeVBO;
|
||||
glGenVertexArrays(1, &planeVAO);
|
||||
glGenBuffers(1, &planeVBO);
|
||||
glBindVertexArray(planeVAO);
|
||||
glBindBuffer(GL_ARRAY_BUFFER, planeVBO);
|
||||
glBufferData(GL_ARRAY_BUFFER, sizeof(planeVertices), &planeVertices, GL_STATIC_DRAW);
|
||||
glBufferData(GL_ARRAY_BUFFER, sizeof(planeVertices), planeVertices, GL_STATIC_DRAW);
|
||||
glEnableVertexAttribArray(0);
|
||||
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)0);
|
||||
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)0);
|
||||
glEnableVertexAttribArray(1);
|
||||
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)(3 * sizeof(GLfloat)));
|
||||
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)(3 * sizeof(float)));
|
||||
glEnableVertexAttribArray(2);
|
||||
glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)(6 * sizeof(GLfloat)));
|
||||
glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8 * sizeof(float), (void*)(6 * sizeof(float)));
|
||||
glBindVertexArray(0);
|
||||
|
||||
// Light source
|
||||
// load textures
|
||||
// -------------
|
||||
unsigned int floorTexture = loadTexture(FileSystem::getPath("resources/textures/wood.png").c_str());
|
||||
|
||||
// shader configuration
|
||||
// --------------------
|
||||
shader.use();
|
||||
shader.setInt("texture1", 0);
|
||||
|
||||
// lighting info
|
||||
// -------------
|
||||
glm::vec3 lightPos(0.0f, 0.0f, 0.0f);
|
||||
|
||||
// Load textures
|
||||
GLuint floorTexture = loadTexture(FileSystem::getPath("resources/textures/wood.png").c_str());
|
||||
|
||||
// Game loop
|
||||
while(!glfwWindowShouldClose(window))
|
||||
// render loop
|
||||
// -----------
|
||||
while (!glfwWindowShouldClose(window))
|
||||
{
|
||||
// Set frame time
|
||||
GLfloat currentFrame = glfwGetTime();
|
||||
// per-frame time logic
|
||||
// --------------------
|
||||
float currentFrame = glfwGetTime();
|
||||
deltaTime = currentFrame - lastFrame;
|
||||
lastFrame = currentFrame;
|
||||
|
||||
// Check and call events
|
||||
glfwPollEvents();
|
||||
Do_Movement();
|
||||
// input
|
||||
// -----
|
||||
processInput(window);
|
||||
|
||||
// Clear the colorbuffer
|
||||
// render
|
||||
// ------
|
||||
glClearColor(0.1f, 0.1f, 0.1f, 1.0f);
|
||||
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
|
||||
|
||||
// Draw objects
|
||||
shader.Use();
|
||||
glm::mat4 view = camera.GetViewMatrix();
|
||||
// draw objects
|
||||
shader.use();
|
||||
glm::mat4 projection = glm::perspective(camera.Zoom, (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f);
|
||||
glUniformMatrix4fv(glGetUniformLocation(shader.Program, "view"), 1, GL_FALSE, glm::value_ptr(view));
|
||||
glUniformMatrix4fv(glGetUniformLocation(shader.Program, "projection"), 1, GL_FALSE, glm::value_ptr(projection));
|
||||
// Set light uniforms
|
||||
glUniform3fv(glGetUniformLocation(shader.Program, "lightPos"), 1, &lightPos[0]);
|
||||
glUniform3fv(glGetUniformLocation(shader.Program, "viewPos"), 1, &camera.Position[0]);
|
||||
glUniform1i(glGetUniformLocation(shader.Program, "blinn"), blinn);
|
||||
// Floor
|
||||
glm::mat4 view = camera.GetViewMatrix();
|
||||
shader.setMat4("projection", projection);
|
||||
shader.setMat4("view", view);
|
||||
// set light uniforms
|
||||
shader.setVec3("viewPos", camera.Position);
|
||||
shader.setVec3("lightPos", lightPos);
|
||||
shader.setInt("blinn", blinn);
|
||||
// floor
|
||||
glBindVertexArray(planeVAO);
|
||||
glActiveTexture(GL_TEXTURE0);
|
||||
glBindTexture(GL_TEXTURE_2D, floorTexture);
|
||||
glDrawArrays(GL_TRIANGLES, 0, 6);
|
||||
glBindVertexArray(0);
|
||||
|
||||
std::cout << (blinn ? "true" : "false") << std::endl;
|
||||
std::cout << (blinn ? "Blinn-Phong" : "Phong") << std::endl;
|
||||
|
||||
// Swap the buffers
|
||||
// glfw: swap buffers and poll IO events (keys pressed/released, mouse moved etc.)
|
||||
// -------------------------------------------------------------------------------
|
||||
glfwSwapBuffers(window);
|
||||
glfwPollEvents();
|
||||
}
|
||||
|
||||
// optional: de-allocate all resources once they've outlived their purpose:
|
||||
// ------------------------------------------------------------------------
|
||||
glDeleteVertexArrays(1, &planeVAO);
|
||||
glDeleteBuffers(1, &planeVBO);
|
||||
|
||||
glfwTerminate();
|
||||
return 0;
|
||||
}
|
||||
|
||||
// This function loads a texture from file. Note: texture loading functions like these are usually
|
||||
// managed by a 'Resource Manager' that manages all resources (like textures, models, audio).
|
||||
// For learning purposes we'll just define it as a utility function.
|
||||
GLuint loadTexture(GLchar const * path)
|
||||
// process all input: query GLFW whether relevant keys are pressed/released this frame and react accordingly
|
||||
// ---------------------------------------------------------------------------------------------------------
|
||||
void processInput(GLFWwindow *window)
|
||||
{
|
||||
// Generate texture ID and load texture data
|
||||
GLuint textureID;
|
||||
glGenTextures(1, &textureID);
|
||||
int width,height;
|
||||
unsigned char* image = SOIL_load_image(path, &width, &height, 0, SOIL_LOAD_RGB);
|
||||
// Assign texture to ID
|
||||
glBindTexture(GL_TEXTURE_2D, textureID);
|
||||
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, image);
|
||||
glGenerateMipmap(GL_TEXTURE_2D);
|
||||
if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
|
||||
glfwSetWindowShouldClose(window, true);
|
||||
|
||||
// Parameters
|
||||
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT );
|
||||
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT );
|
||||
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR );
|
||||
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
|
||||
glBindTexture(GL_TEXTURE_2D, 0);
|
||||
SOIL_free_image_data(image);
|
||||
return textureID;
|
||||
|
||||
}
|
||||
|
||||
bool keys[1024];
|
||||
bool keysPressed[1024];
|
||||
// Moves/alters the camera positions based on user input
|
||||
void Do_Movement()
|
||||
{
|
||||
// Camera controls
|
||||
if(keys[GLFW_KEY_W])
|
||||
float cameraSpeed = 2.5 * deltaTime;
|
||||
if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS)
|
||||
camera.ProcessKeyboard(FORWARD, deltaTime);
|
||||
if(keys[GLFW_KEY_S])
|
||||
if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)
|
||||
camera.ProcessKeyboard(BACKWARD, deltaTime);
|
||||
if(keys[GLFW_KEY_A])
|
||||
if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS)
|
||||
camera.ProcessKeyboard(LEFT, deltaTime);
|
||||
if(keys[GLFW_KEY_D])
|
||||
if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS)
|
||||
camera.ProcessKeyboard(RIGHT, deltaTime);
|
||||
|
||||
if (keys[GLFW_KEY_B] && !keysPressed[GLFW_KEY_B])
|
||||
if (glfwGetKey(window, GLFW_KEY_B) == GLFW_PRESS && !blinnKeyPressed)
|
||||
{
|
||||
blinn = !blinn;
|
||||
keysPressed[GLFW_KEY_B] = true;
|
||||
blinnKeyPressed = true;
|
||||
}
|
||||
}
|
||||
|
||||
GLfloat lastX = 400, lastY = 300;
|
||||
bool firstMouse = true;
|
||||
// Is called whenever a key is pressed/released via GLFW
|
||||
void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode)
|
||||
{
|
||||
if(key == GLFW_KEY_ESCAPE && action == GLFW_PRESS)
|
||||
glfwSetWindowShouldClose(window, GL_TRUE);
|
||||
|
||||
if (key >= 0 && key <= 1024)
|
||||
if (glfwGetKey(window, GLFW_KEY_B) == GLFW_RELEASE)
|
||||
{
|
||||
if (action == GLFW_PRESS)
|
||||
keys[key] = true;
|
||||
else if (action == GLFW_RELEASE)
|
||||
{
|
||||
keys[key] = false;
|
||||
keysPressed[key] = false;
|
||||
}
|
||||
blinnKeyPressed = false;
|
||||
}
|
||||
}
|
||||
|
||||
// glfw: whenever the window size changed (by OS or user resize) this callback function executes
|
||||
// ---------------------------------------------------------------------------------------------
|
||||
void framebuffer_size_callback(GLFWwindow* window, int width, int height)
|
||||
{
|
||||
// make sure the viewport matches the new window dimensions; note that width and
|
||||
// height will be significantly larger than specified on retina displays.
|
||||
glViewport(0, 0, width, height);
|
||||
}
|
||||
|
||||
|
||||
// glfw: whenever the mouse moves, this callback is called
|
||||
// -------------------------------------------------------
|
||||
void mouse_callback(GLFWwindow* window, double xpos, double ypos)
|
||||
{
|
||||
if(firstMouse)
|
||||
if (firstMouse)
|
||||
{
|
||||
lastX = xpos;
|
||||
lastY = ypos;
|
||||
firstMouse = false;
|
||||
}
|
||||
|
||||
GLfloat xoffset = xpos - lastX;
|
||||
GLfloat yoffset = lastY - ypos;
|
||||
|
||||
float xoffset = xpos - lastX;
|
||||
float yoffset = lastY - ypos; // reversed since y-coordinates go from bottom to top
|
||||
|
||||
lastX = xpos;
|
||||
lastY = ypos;
|
||||
|
||||
camera.ProcessMouseMovement(xoffset, yoffset);
|
||||
}
|
||||
}
|
||||
|
||||
// glfw: whenever the mouse scroll wheel scrolls, this callback is called
|
||||
// ----------------------------------------------------------------------
|
||||
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
|
||||
{
|
||||
camera.ProcessMouseScroll(yoffset);
|
||||
}
|
||||
|
||||
// utility function for loading a 2D texture from file
|
||||
// ---------------------------------------------------
|
||||
unsigned int loadTexture(char const * path)
|
||||
{
|
||||
unsigned int textureID;
|
||||
glGenTextures(1, &textureID);
|
||||
|
||||
int width, height, nrComponents;
|
||||
unsigned char *data = stbi_load(path, &width, &height, &nrComponents, 0);
|
||||
if (data)
|
||||
{
|
||||
GLenum format;
|
||||
if (nrComponents == 1)
|
||||
format = GL_RED;
|
||||
else if (nrComponents == 3)
|
||||
format = GL_RGB;
|
||||
else if (nrComponents == 4)
|
||||
format = GL_RGBA;
|
||||
|
||||
glBindTexture(GL_TEXTURE_2D, textureID);
|
||||
glTexImage2D(GL_TEXTURE_2D, 0, format, width, height, 0, format, GL_UNSIGNED_BYTE, data);
|
||||
glGenerateMipmap(GL_TEXTURE_2D);
|
||||
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, format == GL_RGBA ? GL_CLAMP_TO_EDGE : GL_REPEAT); // for this tutorial: use GL_CLAMP_TO_EDGE to prevent semi-transparent borders. Due to interpolation it takes texels from next repeat
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, format == GL_RGBA ? GL_CLAMP_TO_EDGE : GL_REPEAT);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
|
||||
|
||||
stbi_image_free(data);
|
||||
}
|
||||
else
|
||||
{
|
||||
std::cout << "Texture failed to load at path: " << path << std::endl;
|
||||
stbi_image_free(data);
|
||||
}
|
||||
|
||||
return textureID;
|
||||
}
|
||||
@@ -1,22 +0,0 @@
|
||||
#version 330 core
|
||||
layout (location = 0) in vec3 position;
|
||||
layout (location = 1) in vec3 normal;
|
||||
layout (location = 2) in vec2 texCoords;
|
||||
|
||||
// Declare an interface block; see 'Advanced GLSL' for what these are.
|
||||
out VS_OUT {
|
||||
vec3 FragPos;
|
||||
vec3 Normal;
|
||||
vec2 TexCoords;
|
||||
} vs_out;
|
||||
|
||||
uniform mat4 projection;
|
||||
uniform mat4 view;
|
||||
|
||||
void main()
|
||||
{
|
||||
gl_Position = projection * view * vec4(position, 1.0f);
|
||||
vs_out.FragPos = position;
|
||||
vs_out.Normal = normal;
|
||||
vs_out.TexCoords = texCoords;
|
||||
}
|
||||
@@ -0,0 +1,20 @@
|
||||
#version 330 core
|
||||
out vec4 color;
|
||||
in vec2 TexCoords;
|
||||
|
||||
uniform sampler2D depthMap;
|
||||
uniform float near_plane;
|
||||
uniform float far_plane;
|
||||
|
||||
float LinearizeDepth(float depth)
|
||||
{
|
||||
float z = depth * 2.0 - 1.0; // Back to NDC
|
||||
return (2.0 * near_plane * far_plane) / (far_plane + near_plane - z * (far_plane - near_plane));
|
||||
}
|
||||
|
||||
void main()
|
||||
{
|
||||
float depthValue = texture(depthMap, TexCoords).r;
|
||||
// color = vec4(vec3(LinearizeDepth(depthValue) / far_plane), 1.0); // perspective
|
||||
color = vec4(vec3(depthValue), 1.0); // orthographic
|
||||
}
|
||||
@@ -0,0 +1,78 @@
|
||||
#version 330 core
|
||||
out vec4 FragColor;
|
||||
|
||||
in VS_OUT {
|
||||
vec3 FragPos;
|
||||
vec3 Normal;
|
||||
vec2 TexCoords;
|
||||
vec4 FragPosLightSpace;
|
||||
} fs_in;
|
||||
|
||||
uniform sampler2D diffuseTexture;
|
||||
uniform sampler2D shadowMap;
|
||||
|
||||
uniform vec3 lightPos;
|
||||
uniform vec3 viewPos;
|
||||
|
||||
uniform bool shadows;
|
||||
|
||||
float ShadowCalculation(vec4 fragPosLightSpace)
|
||||
{
|
||||
// perform perspective divide
|
||||
vec3 projCoords = fragPosLightSpace.xyz / fragPosLightSpace.w;
|
||||
// Transform to [0,1] range
|
||||
projCoords = projCoords * 0.5 + 0.5;
|
||||
// Get closest depth value from light's perspective (using [0,1] range fragPosLight as coords)
|
||||
float closestDepth = texture(shadowMap, projCoords.xy).r;
|
||||
// Get depth of current fragment from light's perspective
|
||||
float currentDepth = projCoords.z;
|
||||
// Calculate bias (based on depth map resolution and slope)
|
||||
vec3 normal = normalize(fs_in.Normal);
|
||||
vec3 lightDir = normalize(lightPos - fs_in.FragPos);
|
||||
float bias = max(0.05 * (1.0 - dot(normal, lightDir)), 0.005);
|
||||
// Check whether current frag pos is in shadow
|
||||
// float shadow = currentDepth - bias > closestDepth ? 1.0 : 0.0;
|
||||
// PCF
|
||||
float shadow = 0.0;
|
||||
vec2 texelSize = 1.0 / textureSize(shadowMap, 0);
|
||||
for(int x = -1; x <= 1; ++x)
|
||||
{
|
||||
for(int y = -1; y <= 1; ++y)
|
||||
{
|
||||
float pcfDepth = texture(shadowMap, projCoords.xy + vec2(x, y) * texelSize).r;
|
||||
shadow += currentDepth - bias > pcfDepth ? 1.0 : 0.0;
|
||||
}
|
||||
}
|
||||
shadow /= 9.0;
|
||||
|
||||
// Keep the shadow at 0.0 when outside the far_plane region of the light's frustum.
|
||||
if(projCoords.z > 1.0)
|
||||
shadow = 0.0;
|
||||
|
||||
return shadow;
|
||||
}
|
||||
|
||||
void main()
|
||||
{
|
||||
vec3 color = texture(diffuseTexture, fs_in.TexCoords).rgb;
|
||||
vec3 normal = normalize(fs_in.Normal);
|
||||
vec3 lightColor = vec3(0.3);
|
||||
// Ambient
|
||||
vec3 ambient = 0.3 * color;
|
||||
// Diffuse
|
||||
vec3 lightDir = normalize(lightPos - fs_in.FragPos);
|
||||
float diff = max(dot(lightDir, normal), 0.0);
|
||||
vec3 diffuse = diff * lightColor;
|
||||
// Specular
|
||||
vec3 viewDir = normalize(viewPos - fs_in.FragPos);
|
||||
vec3 reflectDir = reflect(-lightDir, normal);
|
||||
float spec = 0.0;
|
||||
vec3 halfwayDir = normalize(lightDir + viewDir);
|
||||
spec = pow(max(dot(normal, halfwayDir), 0.0), 64.0);
|
||||
vec3 specular = spec * lightColor;
|
||||
// Calculate shadow
|
||||
float shadow = shadows ? ShadowCalculation(fs_in.FragPosLightSpace) : 0.0;
|
||||
vec3 lighting = (ambient + (1.0 - shadow) * (diffuse + specular)) * color;
|
||||
|
||||
FragColor = vec4(lighting, 1.0f);
|
||||
}
|
||||
@@ -0,0 +1,27 @@
|
||||
#version 330 core
|
||||
layout (location = 0) in vec3 position;
|
||||
layout (location = 1) in vec3 normal;
|
||||
layout (location = 2) in vec2 texCoords;
|
||||
|
||||
out vec2 TexCoords;
|
||||
|
||||
out VS_OUT {
|
||||
vec3 FragPos;
|
||||
vec3 Normal;
|
||||
vec2 TexCoords;
|
||||
vec4 FragPosLightSpace;
|
||||
} vs_out;
|
||||
|
||||
uniform mat4 projection;
|
||||
uniform mat4 view;
|
||||
uniform mat4 model;
|
||||
uniform mat4 lightSpaceMatrix;
|
||||
|
||||
void main()
|
||||
{
|
||||
gl_Position = projection * view * model * vec4(position, 1.0f);
|
||||
vs_out.FragPos = vec3(model * vec4(position, 1.0));
|
||||
vs_out.Normal = transpose(inverse(mat3(model))) * normal;
|
||||
vs_out.TexCoords = texCoords;
|
||||
vs_out.FragPosLightSpace = lightSpaceMatrix * vec4(vs_out.FragPos, 1.0);
|
||||
}
|
||||
@@ -0,0 +1,435 @@
|
||||
// GLEW
|
||||
#define GLEW_STATIC
|
||||
#include <GL/glew.h>
|
||||
|
||||
// GLFW
|
||||
#include <GLFW/glfw3.h>
|
||||
|
||||
// GL includes
|
||||
#include <learnopengl/shader.h>
|
||||
#include <learnopengl/camera.h>
|
||||
|
||||
// GLM Mathemtics
|
||||
#include <glm/glm.hpp>
|
||||
#include <glm/gtc/matrix_transform.hpp>
|
||||
#include <glm/gtc/type_ptr.hpp>
|
||||
|
||||
// Other Libs
|
||||
#include <SOIL.h>
|
||||
#include <learnopengl/filesystem.h>
|
||||
|
||||
// Properties
|
||||
const GLuint SCR_WIDTH = 800, SCR_HEIGHT = 600;
|
||||
|
||||
// Function prototypes
|
||||
void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode);
|
||||
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);
|
||||
void mouse_callback(GLFWwindow* window, double xpos, double ypos);
|
||||
void Do_Movement();
|
||||
GLuint loadTexture(GLchar const * path);
|
||||
void RenderScene(Shader &shader);
|
||||
void RenderCube();
|
||||
void RenderQuad();
|
||||
|
||||
// Camera
|
||||
Camera camera(glm::vec3(0.0f, 0.0f, 3.0f));
|
||||
|
||||
// Delta
|
||||
GLfloat deltaTime = 0.0f;
|
||||
GLfloat lastFrame = 0.0f;
|
||||
|
||||
// Options
|
||||
GLboolean shadows = true;
|
||||
|
||||
// Global variables
|
||||
GLuint woodTexture;
|
||||
GLuint planeVAO;
|
||||
|
||||
// The MAIN function, from here we start our application and run our Game loop
|
||||
int main()
|
||||
{
|
||||
// Init GLFW
|
||||
glfwInit();
|
||||
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
|
||||
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
|
||||
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
|
||||
glfwWindowHint(GLFW_RESIZABLE, GL_FALSE);
|
||||
|
||||
GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", nullptr, nullptr); // Windowed
|
||||
glfwMakeContextCurrent(window);
|
||||
|
||||
// Set the required callback functions
|
||||
glfwSetKeyCallback(window, key_callback);
|
||||
glfwSetCursorPosCallback(window, mouse_callback);
|
||||
glfwSetScrollCallback(window, scroll_callback);
|
||||
|
||||
// Options
|
||||
glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);
|
||||
|
||||
// Initialize GLEW to setup the OpenGL Function pointers
|
||||
glewExperimental = GL_TRUE;
|
||||
glewInit();
|
||||
|
||||
// Define the viewport dimensions
|
||||
glViewport(0, 0, SCR_WIDTH, SCR_HEIGHT);
|
||||
|
||||
// Setup some OpenGL options
|
||||
glEnable(GL_DEPTH_TEST);
|
||||
|
||||
// Setup and compile our shaders
|
||||
Shader shader("shadow_mapping.vs", "shadow_mapping.frag");
|
||||
Shader simpleDepthShader("shadow_mapping_depth.vs", "shadow_mapping_depth.frag");
|
||||
Shader debugDepthQuad("debug_quad.vs", "debug_quad_depth.frag");
|
||||
|
||||
// Set texture samples
|
||||
shader.Use();
|
||||
glUniform1i(glGetUniformLocation(shader.Program, "diffuseTexture"), 0);
|
||||
glUniform1i(glGetUniformLocation(shader.Program, "shadowMap"), 1);
|
||||
|
||||
GLfloat planeVertices[] = {
|
||||
// Positions // Normals // Texture Coords
|
||||
25.0f, -0.5f, 25.0f, 0.0f, 1.0f, 0.0f, 25.0f, 0.0f,
|
||||
-25.0f, -0.5f, -25.0f, 0.0f, 1.0f, 0.0f, 0.0f, 25.0f,
|
||||
-25.0f, -0.5f, 25.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f,
|
||||
|
||||
25.0f, -0.5f, 25.0f, 0.0f, 1.0f, 0.0f, 25.0f, 0.0f,
|
||||
25.0f, -0.5f, -25.0f, 0.0f, 1.0f, 0.0f, 25.0f, 25.0f,
|
||||
-25.0f, -0.5f, -25.0f, 0.0f, 1.0f, 0.0f, 0.0f, 25.0f
|
||||
};
|
||||
// Setup plane VAO
|
||||
GLuint planeVBO;
|
||||
glGenVertexArrays(1, &planeVAO);
|
||||
glGenBuffers(1, &planeVBO);
|
||||
glBindVertexArray(planeVAO);
|
||||
glBindBuffer(GL_ARRAY_BUFFER, planeVBO);
|
||||
glBufferData(GL_ARRAY_BUFFER, sizeof(planeVertices), &planeVertices, GL_STATIC_DRAW);
|
||||
glEnableVertexAttribArray(0);
|
||||
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)0);
|
||||
glEnableVertexAttribArray(1);
|
||||
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)(3 * sizeof(GLfloat)));
|
||||
glEnableVertexAttribArray(2);
|
||||
glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)(6 * sizeof(GLfloat)));
|
||||
glBindVertexArray(0);
|
||||
|
||||
// Light source
|
||||
glm::vec3 lightPos(-2.0f, 4.0f, -1.0f);
|
||||
|
||||
// Load textures
|
||||
woodTexture = loadTexture(FileSystem::getPath("resources/textures/wood.png").c_str());
|
||||
|
||||
// Configure depth map FBO
|
||||
const GLuint SHADOW_WIDTH = 1024, SHADOW_HEIGHT = 1024;
|
||||
GLuint depthMapFBO;
|
||||
glGenFramebuffers(1, &depthMapFBO);
|
||||
// - Create depth texture
|
||||
GLuint depthMap;
|
||||
glGenTextures(1, &depthMap);
|
||||
glBindTexture(GL_TEXTURE_2D, depthMap);
|
||||
|
||||
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, SHADOW_WIDTH, SHADOW_HEIGHT, 0, GL_DEPTH_COMPONENT, GL_FLOAT, NULL);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_BORDER);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_BORDER);
|
||||
GLfloat borderColor[] = { 1.0, 1.0, 1.0, 1.0 };
|
||||
glTexParameterfv(GL_TEXTURE_2D, GL_TEXTURE_BORDER_COLOR, borderColor);
|
||||
|
||||
glBindFramebuffer(GL_FRAMEBUFFER, depthMapFBO);
|
||||
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, depthMap, 0);
|
||||
glDrawBuffer(GL_NONE);
|
||||
glReadBuffer(GL_NONE);
|
||||
glBindFramebuffer(GL_FRAMEBUFFER, 0);
|
||||
|
||||
glClearColor(0.1f, 0.1f, 0.1f, 1.0f);
|
||||
|
||||
// Game loop
|
||||
while (!glfwWindowShouldClose(window))
|
||||
{
|
||||
// Set frame time
|
||||
GLfloat currentFrame = glfwGetTime();
|
||||
deltaTime = currentFrame - lastFrame;
|
||||
lastFrame = currentFrame;
|
||||
|
||||
// Check and call events
|
||||
glfwPollEvents();
|
||||
Do_Movement();
|
||||
|
||||
// Change light position over time
|
||||
lightPos.z = cos(glfwGetTime()) * 2.0f;
|
||||
|
||||
// 1. Render depth of scene to texture (from light's perspective)
|
||||
// - Get light projection/view matrix.
|
||||
glm::mat4 lightProjection, lightView;
|
||||
glm::mat4 lightSpaceMatrix;
|
||||
GLfloat near_plane = 1.0f, far_plane = 7.5f;
|
||||
lightProjection = glm::ortho(-10.0f, 10.0f, -10.0f, 10.0f, near_plane, far_plane);
|
||||
//lightProjection = glm::perspective(45.0f, (GLfloat)SHADOW_WIDTH / (GLfloat)SHADOW_HEIGHT, near_plane, far_plane); // Note that if you use a perspective projection matrix you'll have to change the light position as the current light position isn't enough to reflect the whole scene.
|
||||
lightView = glm::lookAt(lightPos, glm::vec3(0.0f), glm::vec3(0.0, 1.0, 0.0));
|
||||
lightSpaceMatrix = lightProjection * lightView;
|
||||
// - now render scene from light's point of view
|
||||
simpleDepthShader.Use();
|
||||
glUniformMatrix4fv(glGetUniformLocation(simpleDepthShader.Program, "lightSpaceMatrix"), 1, GL_FALSE, glm::value_ptr(lightSpaceMatrix));
|
||||
glViewport(0, 0, SHADOW_WIDTH, SHADOW_HEIGHT);
|
||||
glBindFramebuffer(GL_FRAMEBUFFER, depthMapFBO);
|
||||
glClear(GL_DEPTH_BUFFER_BIT);
|
||||
RenderScene(simpleDepthShader);
|
||||
glBindFramebuffer(GL_FRAMEBUFFER, 0);
|
||||
|
||||
// 2. Render scene as normal
|
||||
glViewport(0, 0, SCR_WIDTH, SCR_HEIGHT);
|
||||
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
|
||||
shader.Use();
|
||||
glm::mat4 projection = glm::perspective(camera.Zoom, (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f);
|
||||
glm::mat4 view = camera.GetViewMatrix();
|
||||
glUniformMatrix4fv(glGetUniformLocation(shader.Program, "projection"), 1, GL_FALSE, glm::value_ptr(projection));
|
||||
glUniformMatrix4fv(glGetUniformLocation(shader.Program, "view"), 1, GL_FALSE, glm::value_ptr(view));
|
||||
// Set light uniforms
|
||||
glUniform3fv(glGetUniformLocation(shader.Program, "lightPos"), 1, &lightPos[0]);
|
||||
glUniform3fv(glGetUniformLocation(shader.Program, "viewPos"), 1, &camera.Position[0]);
|
||||
glUniformMatrix4fv(glGetUniformLocation(shader.Program, "lightSpaceMatrix"), 1, GL_FALSE, glm::value_ptr(lightSpaceMatrix));
|
||||
// Enable/Disable shadows by pressing 'SPACE'
|
||||
glUniform1i(glGetUniformLocation(shader.Program, "shadows"), shadows);
|
||||
glActiveTexture(GL_TEXTURE0);
|
||||
glBindTexture(GL_TEXTURE_2D, woodTexture);
|
||||
glActiveTexture(GL_TEXTURE1);
|
||||
glBindTexture(GL_TEXTURE_2D, depthMap);
|
||||
RenderScene(shader);
|
||||
|
||||
// 3. DEBUG: visualize depth map by rendering it to plane
|
||||
debugDepthQuad.Use();
|
||||
glUniform1f(glGetUniformLocation(debugDepthQuad.Program, "near_plane"), near_plane);
|
||||
glUniform1f(glGetUniformLocation(debugDepthQuad.Program, "far_plane"), far_plane);
|
||||
glActiveTexture(GL_TEXTURE0);
|
||||
glBindTexture(GL_TEXTURE_2D, depthMap);
|
||||
//RenderQuad(); // uncomment this line to see depth map
|
||||
|
||||
|
||||
// Swap the buffers
|
||||
glfwSwapBuffers(window);
|
||||
}
|
||||
|
||||
glfwTerminate();
|
||||
return 0;
|
||||
}
|
||||
|
||||
void RenderScene(Shader &shader)
|
||||
{
|
||||
// Floor
|
||||
glm::mat4 model;
|
||||
glUniformMatrix4fv(glGetUniformLocation(shader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
|
||||
glBindVertexArray(planeVAO);
|
||||
glDrawArrays(GL_TRIANGLES, 0, 6);
|
||||
glBindVertexArray(0);
|
||||
// Cubes
|
||||
model = glm::mat4();
|
||||
model = glm::translate(model, glm::vec3(0.0f, 1.5f, 0.0));
|
||||
glUniformMatrix4fv(glGetUniformLocation(shader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
|
||||
RenderCube();
|
||||
model = glm::mat4();
|
||||
model = glm::translate(model, glm::vec3(2.0f, 0.0f, 1.0));
|
||||
glUniformMatrix4fv(glGetUniformLocation(shader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
|
||||
RenderCube();
|
||||
model = glm::mat4();
|
||||
model = glm::translate(model, glm::vec3(-1.0f, 0.0f, 2.0));
|
||||
model = glm::rotate(model, 60.0f, glm::normalize(glm::vec3(1.0, 0.0, 1.0)));
|
||||
model = glm::scale(model, glm::vec3(0.5));
|
||||
glUniformMatrix4fv(glGetUniformLocation(shader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
|
||||
RenderCube();
|
||||
}
|
||||
|
||||
|
||||
// RenderQuad() Renders a 1x1 quad in NDC, best used for framebuffer color targets
|
||||
// and post-processing effects.
|
||||
GLuint quadVAO = 0;
|
||||
GLuint quadVBO;
|
||||
void RenderQuad()
|
||||
{
|
||||
if (quadVAO == 0)
|
||||
{
|
||||
GLfloat quadVertices[] = {
|
||||
// Positions // Texture Coords
|
||||
-1.0f, 1.0f, 0.0f, 0.0f, 1.0f,
|
||||
-1.0f, -1.0f, 0.0f, 0.0f, 0.0f,
|
||||
1.0f, 1.0f, 0.0f, 1.0f, 1.0f,
|
||||
1.0f, -1.0f, 0.0f, 1.0f, 0.0f,
|
||||
};
|
||||
// Setup plane VAO
|
||||
glGenVertexArrays(1, &quadVAO);
|
||||
glGenBuffers(1, &quadVBO);
|
||||
glBindVertexArray(quadVAO);
|
||||
glBindBuffer(GL_ARRAY_BUFFER, quadVBO);
|
||||
glBufferData(GL_ARRAY_BUFFER, sizeof(quadVertices), &quadVertices, GL_STATIC_DRAW);
|
||||
glEnableVertexAttribArray(0);
|
||||
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 5 * sizeof(GLfloat), (GLvoid*)0);
|
||||
glEnableVertexAttribArray(1);
|
||||
glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 5 * sizeof(GLfloat), (GLvoid*)(3 * sizeof(GLfloat)));
|
||||
}
|
||||
glBindVertexArray(quadVAO);
|
||||
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
|
||||
glBindVertexArray(0);
|
||||
}
|
||||
|
||||
// RenderCube() Renders a 1x1 3D cube in NDC.
|
||||
GLuint cubeVAO = 0;
|
||||
GLuint cubeVBO = 0;
|
||||
void RenderCube()
|
||||
{
|
||||
// Initialize (if necessary)
|
||||
if (cubeVAO == 0)
|
||||
{
|
||||
GLfloat vertices[] = {
|
||||
// Back face
|
||||
-0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, // Bottom-left
|
||||
0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f, // top-right
|
||||
0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 1.0f, 0.0f, // bottom-right
|
||||
0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f, // top-right
|
||||
-0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, // bottom-left
|
||||
-0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 0.0f, 1.0f,// top-left
|
||||
// Front face
|
||||
-0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, // bottom-left
|
||||
0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, // bottom-right
|
||||
0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, // top-right
|
||||
0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, // top-right
|
||||
-0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, // top-left
|
||||
-0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, // bottom-left
|
||||
// Left face
|
||||
-0.5f, 0.5f, 0.5f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-right
|
||||
-0.5f, 0.5f, -0.5f, -1.0f, 0.0f, 0.0f, 1.0f, 1.0f, // top-left
|
||||
-0.5f, -0.5f, -0.5f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-left
|
||||
-0.5f, -0.5f, -0.5f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-left
|
||||
-0.5f, -0.5f, 0.5f, -1.0f, 0.0f, 0.0f, 0.0f, 0.0f, // bottom-right
|
||||
-0.5f, 0.5f, 0.5f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-right
|
||||
// Right face
|
||||
0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-left
|
||||
0.5f, -0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-right
|
||||
0.5f, 0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, // top-right
|
||||
0.5f, -0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-right
|
||||
0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-left
|
||||
0.5f, -0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, // bottom-left
|
||||
// Bottom face
|
||||
-0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f, // top-right
|
||||
0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, 1.0f, 1.0f, // top-left
|
||||
0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f,// bottom-left
|
||||
0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f, // bottom-left
|
||||
-0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, 0.0f, 0.0f, // bottom-right
|
||||
-0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f, // top-right
|
||||
// Top face
|
||||
-0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f,// top-left
|
||||
0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, // bottom-right
|
||||
0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, // top-right
|
||||
0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, // bottom-right
|
||||
-0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f,// top-left
|
||||
-0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f // bottom-left
|
||||
};
|
||||
glGenVertexArrays(1, &cubeVAO);
|
||||
glGenBuffers(1, &cubeVBO);
|
||||
// Fill buffer
|
||||
glBindBuffer(GL_ARRAY_BUFFER, cubeVBO);
|
||||
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
|
||||
// Link vertex attributes
|
||||
glBindVertexArray(cubeVAO);
|
||||
glEnableVertexAttribArray(0);
|
||||
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)0);
|
||||
glEnableVertexAttribArray(1);
|
||||
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)(3 * sizeof(GLfloat)));
|
||||
glEnableVertexAttribArray(2);
|
||||
glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)(6 * sizeof(GLfloat)));
|
||||
glBindBuffer(GL_ARRAY_BUFFER, 0);
|
||||
glBindVertexArray(0);
|
||||
}
|
||||
// Render Cube
|
||||
glBindVertexArray(cubeVAO);
|
||||
glDrawArrays(GL_TRIANGLES, 0, 36);
|
||||
glBindVertexArray(0);
|
||||
}
|
||||
|
||||
// This function loads a texture from file. Note: texture loading functions like these are usually
|
||||
// managed by a 'Resource Manager' that manages all resources (like textures, models, audio).
|
||||
// For learning purposes we'll just define it as a utility function.
|
||||
GLuint loadTexture(GLchar const * path)
|
||||
{
|
||||
// Generate texture ID and load texture data
|
||||
GLuint textureID;
|
||||
glGenTextures(1, &textureID);
|
||||
int width, height;
|
||||
unsigned char* image = SOIL_load_image(path, &width, &height, 0, SOIL_LOAD_RGB);
|
||||
// Assign texture to ID
|
||||
glBindTexture(GL_TEXTURE_2D, textureID);
|
||||
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, image);
|
||||
glGenerateMipmap(GL_TEXTURE_2D);
|
||||
|
||||
// Parameters
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
|
||||
glBindTexture(GL_TEXTURE_2D, 0);
|
||||
SOIL_free_image_data(image);
|
||||
return textureID;
|
||||
|
||||
}
|
||||
|
||||
bool keys[1024];
|
||||
bool keysPressed[1024];
|
||||
// Moves/alters the camera positions based on user input
|
||||
void Do_Movement()
|
||||
{
|
||||
// Camera controls
|
||||
if (keys[GLFW_KEY_W])
|
||||
camera.ProcessKeyboard(FORWARD, deltaTime);
|
||||
if (keys[GLFW_KEY_S])
|
||||
camera.ProcessKeyboard(BACKWARD, deltaTime);
|
||||
if (keys[GLFW_KEY_A])
|
||||
camera.ProcessKeyboard(LEFT, deltaTime);
|
||||
if (keys[GLFW_KEY_D])
|
||||
camera.ProcessKeyboard(RIGHT, deltaTime);
|
||||
|
||||
if (keys[GLFW_KEY_SPACE] && !keysPressed[GLFW_KEY_SPACE])
|
||||
{
|
||||
shadows = !shadows;
|
||||
keysPressed[GLFW_KEY_SPACE] = true;
|
||||
}
|
||||
}
|
||||
|
||||
GLfloat lastX = 400, lastY = 300;
|
||||
bool firstMouse = true;
|
||||
// Is called whenever a key is pressed/released via GLFW
|
||||
void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode)
|
||||
{
|
||||
if (key == GLFW_KEY_ESCAPE && action == GLFW_PRESS)
|
||||
glfwSetWindowShouldClose(window, GL_TRUE);
|
||||
|
||||
if (key >= 0 && key <= 1024)
|
||||
{
|
||||
if (action == GLFW_PRESS)
|
||||
keys[key] = true;
|
||||
else if (action == GLFW_RELEASE)
|
||||
{
|
||||
keys[key] = false;
|
||||
keysPressed[key] = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void mouse_callback(GLFWwindow* window, double xpos, double ypos)
|
||||
{
|
||||
if (firstMouse)
|
||||
{
|
||||
lastX = xpos;
|
||||
lastY = ypos;
|
||||
firstMouse = false;
|
||||
}
|
||||
|
||||
GLfloat xoffset = xpos - lastX;
|
||||
GLfloat yoffset = lastY - ypos;
|
||||
|
||||
lastX = xpos;
|
||||
lastY = ypos;
|
||||
|
||||
camera.ProcessMouseMovement(xoffset, yoffset);
|
||||
}
|
||||
|
||||
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
|
||||
{
|
||||
camera.ProcessMouseScroll(yoffset);
|
||||
}
|
||||
@@ -0,0 +1,6 @@
|
||||
#version 330 core
|
||||
|
||||
void main()
|
||||
{
|
||||
// gl_FragDepth = gl_FragCoord.z;
|
||||
}
|
||||
@@ -0,0 +1,10 @@
|
||||
#version 330 core
|
||||
layout (location = 0) in vec3 position;
|
||||
|
||||
uniform mat4 lightSpaceMatrix;
|
||||
uniform mat4 model;
|
||||
|
||||
void main()
|
||||
{
|
||||
gl_Position = lightSpaceMatrix * model * vec4(position, 1.0f);
|
||||
}
|
||||
@@ -0,0 +1,20 @@
|
||||
#version 330 core
|
||||
out vec4 color;
|
||||
in vec2 TexCoords;
|
||||
|
||||
uniform sampler2D depthMap;
|
||||
uniform float near_plane;
|
||||
uniform float far_plane;
|
||||
|
||||
float LinearizeDepth(float depth)
|
||||
{
|
||||
float z = depth * 2.0 - 1.0; // Back to NDC
|
||||
return (2.0 * near_plane * far_plane) / (far_plane + near_plane - z * (far_plane - near_plane));
|
||||
}
|
||||
|
||||
void main()
|
||||
{
|
||||
float depthValue = texture(depthMap, TexCoords).r;
|
||||
// color = vec4(vec3(LinearizeDepth(depthValue) / far_plane), 1.0); // perspective
|
||||
color = vec4(vec3(depthValue), 1.0); // orthographic
|
||||
}
|
||||
435
src/5.advanced_lighting/3.1.3.shadow_mapping/shadow_mapping.cpp
Normal file
435
src/5.advanced_lighting/3.1.3.shadow_mapping/shadow_mapping.cpp
Normal file
@@ -0,0 +1,435 @@
|
||||
// GLEW
|
||||
#define GLEW_STATIC
|
||||
#include <GL/glew.h>
|
||||
|
||||
// GLFW
|
||||
#include <GLFW/glfw3.h>
|
||||
|
||||
// GL includes
|
||||
#include <learnopengl/shader.h>
|
||||
#include <learnopengl/camera.h>
|
||||
|
||||
// GLM Mathemtics
|
||||
#include <glm/glm.hpp>
|
||||
#include <glm/gtc/matrix_transform.hpp>
|
||||
#include <glm/gtc/type_ptr.hpp>
|
||||
|
||||
// Other Libs
|
||||
#include <SOIL.h>
|
||||
#include <learnopengl/filesystem.h>
|
||||
|
||||
// Properties
|
||||
const GLuint SCR_WIDTH = 800, SCR_HEIGHT = 600;
|
||||
|
||||
// Function prototypes
|
||||
void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode);
|
||||
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);
|
||||
void mouse_callback(GLFWwindow* window, double xpos, double ypos);
|
||||
void Do_Movement();
|
||||
GLuint loadTexture(GLchar const * path);
|
||||
void RenderScene(Shader &shader);
|
||||
void RenderCube();
|
||||
void RenderQuad();
|
||||
|
||||
// Camera
|
||||
Camera camera(glm::vec3(0.0f, 0.0f, 3.0f));
|
||||
|
||||
// Delta
|
||||
GLfloat deltaTime = 0.0f;
|
||||
GLfloat lastFrame = 0.0f;
|
||||
|
||||
// Options
|
||||
GLboolean shadows = true;
|
||||
|
||||
// Global variables
|
||||
GLuint woodTexture;
|
||||
GLuint planeVAO;
|
||||
|
||||
// The MAIN function, from here we start our application and run our Game loop
|
||||
int main()
|
||||
{
|
||||
// Init GLFW
|
||||
glfwInit();
|
||||
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
|
||||
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
|
||||
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
|
||||
glfwWindowHint(GLFW_RESIZABLE, GL_FALSE);
|
||||
|
||||
GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", nullptr, nullptr); // Windowed
|
||||
glfwMakeContextCurrent(window);
|
||||
|
||||
// Set the required callback functions
|
||||
glfwSetKeyCallback(window, key_callback);
|
||||
glfwSetCursorPosCallback(window, mouse_callback);
|
||||
glfwSetScrollCallback(window, scroll_callback);
|
||||
|
||||
// Options
|
||||
glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);
|
||||
|
||||
// Initialize GLEW to setup the OpenGL Function pointers
|
||||
glewExperimental = GL_TRUE;
|
||||
glewInit();
|
||||
|
||||
// Define the viewport dimensions
|
||||
glViewport(0, 0, SCR_WIDTH, SCR_HEIGHT);
|
||||
|
||||
// Setup some OpenGL options
|
||||
glEnable(GL_DEPTH_TEST);
|
||||
|
||||
// Setup and compile our shaders
|
||||
Shader shader("shadow_mapping.vs", "shadow_mapping.frag");
|
||||
Shader simpleDepthShader("shadow_mapping_depth.vs", "shadow_mapping_depth.frag");
|
||||
Shader debugDepthQuad("debug_quad.vs", "debug_quad_depth.frag");
|
||||
|
||||
// Set texture samples
|
||||
shader.Use();
|
||||
glUniform1i(glGetUniformLocation(shader.Program, "diffuseTexture"), 0);
|
||||
glUniform1i(glGetUniformLocation(shader.Program, "shadowMap"), 1);
|
||||
|
||||
GLfloat planeVertices[] = {
|
||||
// Positions // Normals // Texture Coords
|
||||
25.0f, -0.5f, 25.0f, 0.0f, 1.0f, 0.0f, 25.0f, 0.0f,
|
||||
-25.0f, -0.5f, -25.0f, 0.0f, 1.0f, 0.0f, 0.0f, 25.0f,
|
||||
-25.0f, -0.5f, 25.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f,
|
||||
|
||||
25.0f, -0.5f, 25.0f, 0.0f, 1.0f, 0.0f, 25.0f, 0.0f,
|
||||
25.0f, -0.5f, -25.0f, 0.0f, 1.0f, 0.0f, 25.0f, 25.0f,
|
||||
-25.0f, -0.5f, -25.0f, 0.0f, 1.0f, 0.0f, 0.0f, 25.0f
|
||||
};
|
||||
// Setup plane VAO
|
||||
GLuint planeVBO;
|
||||
glGenVertexArrays(1, &planeVAO);
|
||||
glGenBuffers(1, &planeVBO);
|
||||
glBindVertexArray(planeVAO);
|
||||
glBindBuffer(GL_ARRAY_BUFFER, planeVBO);
|
||||
glBufferData(GL_ARRAY_BUFFER, sizeof(planeVertices), &planeVertices, GL_STATIC_DRAW);
|
||||
glEnableVertexAttribArray(0);
|
||||
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)0);
|
||||
glEnableVertexAttribArray(1);
|
||||
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)(3 * sizeof(GLfloat)));
|
||||
glEnableVertexAttribArray(2);
|
||||
glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)(6 * sizeof(GLfloat)));
|
||||
glBindVertexArray(0);
|
||||
|
||||
// Light source
|
||||
glm::vec3 lightPos(-2.0f, 4.0f, -1.0f);
|
||||
|
||||
// Load textures
|
||||
woodTexture = loadTexture(FileSystem::getPath("resources/textures/wood.png").c_str());
|
||||
|
||||
// Configure depth map FBO
|
||||
const GLuint SHADOW_WIDTH = 1024, SHADOW_HEIGHT = 1024;
|
||||
GLuint depthMapFBO;
|
||||
glGenFramebuffers(1, &depthMapFBO);
|
||||
// - Create depth texture
|
||||
GLuint depthMap;
|
||||
glGenTextures(1, &depthMap);
|
||||
glBindTexture(GL_TEXTURE_2D, depthMap);
|
||||
|
||||
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, SHADOW_WIDTH, SHADOW_HEIGHT, 0, GL_DEPTH_COMPONENT, GL_FLOAT, NULL);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_BORDER);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_BORDER);
|
||||
GLfloat borderColor[] = { 1.0, 1.0, 1.0, 1.0 };
|
||||
glTexParameterfv(GL_TEXTURE_2D, GL_TEXTURE_BORDER_COLOR, borderColor);
|
||||
|
||||
glBindFramebuffer(GL_FRAMEBUFFER, depthMapFBO);
|
||||
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_TEXTURE_2D, depthMap, 0);
|
||||
glDrawBuffer(GL_NONE);
|
||||
glReadBuffer(GL_NONE);
|
||||
glBindFramebuffer(GL_FRAMEBUFFER, 0);
|
||||
|
||||
glClearColor(0.1f, 0.1f, 0.1f, 1.0f);
|
||||
|
||||
// Game loop
|
||||
while (!glfwWindowShouldClose(window))
|
||||
{
|
||||
// Set frame time
|
||||
GLfloat currentFrame = glfwGetTime();
|
||||
deltaTime = currentFrame - lastFrame;
|
||||
lastFrame = currentFrame;
|
||||
|
||||
// Check and call events
|
||||
glfwPollEvents();
|
||||
Do_Movement();
|
||||
|
||||
// Change light position over time
|
||||
lightPos.z = cos(glfwGetTime()) * 2.0f;
|
||||
|
||||
// 1. Render depth of scene to texture (from light's perspective)
|
||||
// - Get light projection/view matrix.
|
||||
glm::mat4 lightProjection, lightView;
|
||||
glm::mat4 lightSpaceMatrix;
|
||||
GLfloat near_plane = 1.0f, far_plane = 7.5f;
|
||||
lightProjection = glm::ortho(-10.0f, 10.0f, -10.0f, 10.0f, near_plane, far_plane);
|
||||
//lightProjection = glm::perspective(45.0f, (GLfloat)SHADOW_WIDTH / (GLfloat)SHADOW_HEIGHT, near_plane, far_plane); // Note that if you use a perspective projection matrix you'll have to change the light position as the current light position isn't enough to reflect the whole scene.
|
||||
lightView = glm::lookAt(lightPos, glm::vec3(0.0f), glm::vec3(0.0, 1.0, 0.0));
|
||||
lightSpaceMatrix = lightProjection * lightView;
|
||||
// - now render scene from light's point of view
|
||||
simpleDepthShader.Use();
|
||||
glUniformMatrix4fv(glGetUniformLocation(simpleDepthShader.Program, "lightSpaceMatrix"), 1, GL_FALSE, glm::value_ptr(lightSpaceMatrix));
|
||||
glViewport(0, 0, SHADOW_WIDTH, SHADOW_HEIGHT);
|
||||
glBindFramebuffer(GL_FRAMEBUFFER, depthMapFBO);
|
||||
glClear(GL_DEPTH_BUFFER_BIT);
|
||||
RenderScene(simpleDepthShader);
|
||||
glBindFramebuffer(GL_FRAMEBUFFER, 0);
|
||||
|
||||
// 2. Render scene as normal
|
||||
glViewport(0, 0, SCR_WIDTH, SCR_HEIGHT);
|
||||
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
|
||||
shader.Use();
|
||||
glm::mat4 projection = glm::perspective(camera.Zoom, (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f);
|
||||
glm::mat4 view = camera.GetViewMatrix();
|
||||
glUniformMatrix4fv(glGetUniformLocation(shader.Program, "projection"), 1, GL_FALSE, glm::value_ptr(projection));
|
||||
glUniformMatrix4fv(glGetUniformLocation(shader.Program, "view"), 1, GL_FALSE, glm::value_ptr(view));
|
||||
// Set light uniforms
|
||||
glUniform3fv(glGetUniformLocation(shader.Program, "lightPos"), 1, &lightPos[0]);
|
||||
glUniform3fv(glGetUniformLocation(shader.Program, "viewPos"), 1, &camera.Position[0]);
|
||||
glUniformMatrix4fv(glGetUniformLocation(shader.Program, "lightSpaceMatrix"), 1, GL_FALSE, glm::value_ptr(lightSpaceMatrix));
|
||||
// Enable/Disable shadows by pressing 'SPACE'
|
||||
glUniform1i(glGetUniformLocation(shader.Program, "shadows"), shadows);
|
||||
glActiveTexture(GL_TEXTURE0);
|
||||
glBindTexture(GL_TEXTURE_2D, woodTexture);
|
||||
glActiveTexture(GL_TEXTURE1);
|
||||
glBindTexture(GL_TEXTURE_2D, depthMap);
|
||||
RenderScene(shader);
|
||||
|
||||
// 3. DEBUG: visualize depth map by rendering it to plane
|
||||
debugDepthQuad.Use();
|
||||
glUniform1f(glGetUniformLocation(debugDepthQuad.Program, "near_plane"), near_plane);
|
||||
glUniform1f(glGetUniformLocation(debugDepthQuad.Program, "far_plane"), far_plane);
|
||||
glActiveTexture(GL_TEXTURE0);
|
||||
glBindTexture(GL_TEXTURE_2D, depthMap);
|
||||
//RenderQuad(); // uncomment this line to see depth map
|
||||
|
||||
|
||||
// Swap the buffers
|
||||
glfwSwapBuffers(window);
|
||||
}
|
||||
|
||||
glfwTerminate();
|
||||
return 0;
|
||||
}
|
||||
|
||||
void RenderScene(Shader &shader)
|
||||
{
|
||||
// Floor
|
||||
glm::mat4 model;
|
||||
glUniformMatrix4fv(glGetUniformLocation(shader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
|
||||
glBindVertexArray(planeVAO);
|
||||
glDrawArrays(GL_TRIANGLES, 0, 6);
|
||||
glBindVertexArray(0);
|
||||
// Cubes
|
||||
model = glm::mat4();
|
||||
model = glm::translate(model, glm::vec3(0.0f, 1.5f, 0.0));
|
||||
glUniformMatrix4fv(glGetUniformLocation(shader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
|
||||
RenderCube();
|
||||
model = glm::mat4();
|
||||
model = glm::translate(model, glm::vec3(2.0f, 0.0f, 1.0));
|
||||
glUniformMatrix4fv(glGetUniformLocation(shader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
|
||||
RenderCube();
|
||||
model = glm::mat4();
|
||||
model = glm::translate(model, glm::vec3(-1.0f, 0.0f, 2.0));
|
||||
model = glm::rotate(model, 60.0f, glm::normalize(glm::vec3(1.0, 0.0, 1.0)));
|
||||
model = glm::scale(model, glm::vec3(0.5));
|
||||
glUniformMatrix4fv(glGetUniformLocation(shader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
|
||||
RenderCube();
|
||||
}
|
||||
|
||||
|
||||
// RenderQuad() Renders a 1x1 quad in NDC, best used for framebuffer color targets
|
||||
// and post-processing effects.
|
||||
GLuint quadVAO = 0;
|
||||
GLuint quadVBO;
|
||||
void RenderQuad()
|
||||
{
|
||||
if (quadVAO == 0)
|
||||
{
|
||||
GLfloat quadVertices[] = {
|
||||
// Positions // Texture Coords
|
||||
-1.0f, 1.0f, 0.0f, 0.0f, 1.0f,
|
||||
-1.0f, -1.0f, 0.0f, 0.0f, 0.0f,
|
||||
1.0f, 1.0f, 0.0f, 1.0f, 1.0f,
|
||||
1.0f, -1.0f, 0.0f, 1.0f, 0.0f,
|
||||
};
|
||||
// Setup plane VAO
|
||||
glGenVertexArrays(1, &quadVAO);
|
||||
glGenBuffers(1, &quadVBO);
|
||||
glBindVertexArray(quadVAO);
|
||||
glBindBuffer(GL_ARRAY_BUFFER, quadVBO);
|
||||
glBufferData(GL_ARRAY_BUFFER, sizeof(quadVertices), &quadVertices, GL_STATIC_DRAW);
|
||||
glEnableVertexAttribArray(0);
|
||||
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 5 * sizeof(GLfloat), (GLvoid*)0);
|
||||
glEnableVertexAttribArray(1);
|
||||
glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 5 * sizeof(GLfloat), (GLvoid*)(3 * sizeof(GLfloat)));
|
||||
}
|
||||
glBindVertexArray(quadVAO);
|
||||
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
|
||||
glBindVertexArray(0);
|
||||
}
|
||||
|
||||
// RenderCube() Renders a 1x1 3D cube in NDC.
|
||||
GLuint cubeVAO = 0;
|
||||
GLuint cubeVBO = 0;
|
||||
void RenderCube()
|
||||
{
|
||||
// Initialize (if necessary)
|
||||
if (cubeVAO == 0)
|
||||
{
|
||||
GLfloat vertices[] = {
|
||||
// Back face
|
||||
-0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, // Bottom-left
|
||||
0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f, // top-right
|
||||
0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 1.0f, 0.0f, // bottom-right
|
||||
0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f, // top-right
|
||||
-0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, // bottom-left
|
||||
-0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 0.0f, 1.0f,// top-left
|
||||
// Front face
|
||||
-0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, // bottom-left
|
||||
0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, // bottom-right
|
||||
0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, // top-right
|
||||
0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, // top-right
|
||||
-0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, // top-left
|
||||
-0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, // bottom-left
|
||||
// Left face
|
||||
-0.5f, 0.5f, 0.5f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-right
|
||||
-0.5f, 0.5f, -0.5f, -1.0f, 0.0f, 0.0f, 1.0f, 1.0f, // top-left
|
||||
-0.5f, -0.5f, -0.5f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-left
|
||||
-0.5f, -0.5f, -0.5f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-left
|
||||
-0.5f, -0.5f, 0.5f, -1.0f, 0.0f, 0.0f, 0.0f, 0.0f, // bottom-right
|
||||
-0.5f, 0.5f, 0.5f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-right
|
||||
// Right face
|
||||
0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-left
|
||||
0.5f, -0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-right
|
||||
0.5f, 0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, // top-right
|
||||
0.5f, -0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-right
|
||||
0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-left
|
||||
0.5f, -0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, // bottom-left
|
||||
// Bottom face
|
||||
-0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f, // top-right
|
||||
0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, 1.0f, 1.0f, // top-left
|
||||
0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f,// bottom-left
|
||||
0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f, // bottom-left
|
||||
-0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, 0.0f, 0.0f, // bottom-right
|
||||
-0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f, // top-right
|
||||
// Top face
|
||||
-0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f,// top-left
|
||||
0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, // bottom-right
|
||||
0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, // top-right
|
||||
0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, // bottom-right
|
||||
-0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f,// top-left
|
||||
-0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f // bottom-left
|
||||
};
|
||||
glGenVertexArrays(1, &cubeVAO);
|
||||
glGenBuffers(1, &cubeVBO);
|
||||
// Fill buffer
|
||||
glBindBuffer(GL_ARRAY_BUFFER, cubeVBO);
|
||||
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
|
||||
// Link vertex attributes
|
||||
glBindVertexArray(cubeVAO);
|
||||
glEnableVertexAttribArray(0);
|
||||
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)0);
|
||||
glEnableVertexAttribArray(1);
|
||||
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)(3 * sizeof(GLfloat)));
|
||||
glEnableVertexAttribArray(2);
|
||||
glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)(6 * sizeof(GLfloat)));
|
||||
glBindBuffer(GL_ARRAY_BUFFER, 0);
|
||||
glBindVertexArray(0);
|
||||
}
|
||||
// Render Cube
|
||||
glBindVertexArray(cubeVAO);
|
||||
glDrawArrays(GL_TRIANGLES, 0, 36);
|
||||
glBindVertexArray(0);
|
||||
}
|
||||
|
||||
// This function loads a texture from file. Note: texture loading functions like these are usually
|
||||
// managed by a 'Resource Manager' that manages all resources (like textures, models, audio).
|
||||
// For learning purposes we'll just define it as a utility function.
|
||||
GLuint loadTexture(GLchar const * path)
|
||||
{
|
||||
// Generate texture ID and load texture data
|
||||
GLuint textureID;
|
||||
glGenTextures(1, &textureID);
|
||||
int width, height;
|
||||
unsigned char* image = SOIL_load_image(path, &width, &height, 0, SOIL_LOAD_RGB);
|
||||
// Assign texture to ID
|
||||
glBindTexture(GL_TEXTURE_2D, textureID);
|
||||
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, image);
|
||||
glGenerateMipmap(GL_TEXTURE_2D);
|
||||
|
||||
// Parameters
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
|
||||
glBindTexture(GL_TEXTURE_2D, 0);
|
||||
SOIL_free_image_data(image);
|
||||
return textureID;
|
||||
|
||||
}
|
||||
|
||||
bool keys[1024];
|
||||
bool keysPressed[1024];
|
||||
// Moves/alters the camera positions based on user input
|
||||
void Do_Movement()
|
||||
{
|
||||
// Camera controls
|
||||
if (keys[GLFW_KEY_W])
|
||||
camera.ProcessKeyboard(FORWARD, deltaTime);
|
||||
if (keys[GLFW_KEY_S])
|
||||
camera.ProcessKeyboard(BACKWARD, deltaTime);
|
||||
if (keys[GLFW_KEY_A])
|
||||
camera.ProcessKeyboard(LEFT, deltaTime);
|
||||
if (keys[GLFW_KEY_D])
|
||||
camera.ProcessKeyboard(RIGHT, deltaTime);
|
||||
|
||||
if (keys[GLFW_KEY_SPACE] && !keysPressed[GLFW_KEY_SPACE])
|
||||
{
|
||||
shadows = !shadows;
|
||||
keysPressed[GLFW_KEY_SPACE] = true;
|
||||
}
|
||||
}
|
||||
|
||||
GLfloat lastX = 400, lastY = 300;
|
||||
bool firstMouse = true;
|
||||
// Is called whenever a key is pressed/released via GLFW
|
||||
void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode)
|
||||
{
|
||||
if (key == GLFW_KEY_ESCAPE && action == GLFW_PRESS)
|
||||
glfwSetWindowShouldClose(window, GL_TRUE);
|
||||
|
||||
if (key >= 0 && key <= 1024)
|
||||
{
|
||||
if (action == GLFW_PRESS)
|
||||
keys[key] = true;
|
||||
else if (action == GLFW_RELEASE)
|
||||
{
|
||||
keys[key] = false;
|
||||
keysPressed[key] = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void mouse_callback(GLFWwindow* window, double xpos, double ypos)
|
||||
{
|
||||
if (firstMouse)
|
||||
{
|
||||
lastX = xpos;
|
||||
lastY = ypos;
|
||||
firstMouse = false;
|
||||
}
|
||||
|
||||
GLfloat xoffset = xpos - lastX;
|
||||
GLfloat yoffset = lastY - ypos;
|
||||
|
||||
lastX = xpos;
|
||||
lastY = ypos;
|
||||
|
||||
camera.ProcessMouseMovement(xoffset, yoffset);
|
||||
}
|
||||
|
||||
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
|
||||
{
|
||||
camera.ProcessMouseScroll(yoffset);
|
||||
}
|
||||
@@ -0,0 +1,78 @@
|
||||
#version 330 core
|
||||
out vec4 FragColor;
|
||||
|
||||
in VS_OUT {
|
||||
vec3 FragPos;
|
||||
vec3 Normal;
|
||||
vec2 TexCoords;
|
||||
vec4 FragPosLightSpace;
|
||||
} fs_in;
|
||||
|
||||
uniform sampler2D diffuseTexture;
|
||||
uniform sampler2D shadowMap;
|
||||
|
||||
uniform vec3 lightPos;
|
||||
uniform vec3 viewPos;
|
||||
|
||||
uniform bool shadows;
|
||||
|
||||
float ShadowCalculation(vec4 fragPosLightSpace)
|
||||
{
|
||||
// perform perspective divide
|
||||
vec3 projCoords = fragPosLightSpace.xyz / fragPosLightSpace.w;
|
||||
// Transform to [0,1] range
|
||||
projCoords = projCoords * 0.5 + 0.5;
|
||||
// Get closest depth value from light's perspective (using [0,1] range fragPosLight as coords)
|
||||
float closestDepth = texture(shadowMap, projCoords.xy).r;
|
||||
// Get depth of current fragment from light's perspective
|
||||
float currentDepth = projCoords.z;
|
||||
// Calculate bias (based on depth map resolution and slope)
|
||||
vec3 normal = normalize(fs_in.Normal);
|
||||
vec3 lightDir = normalize(lightPos - fs_in.FragPos);
|
||||
float bias = max(0.05 * (1.0 - dot(normal, lightDir)), 0.005);
|
||||
// Check whether current frag pos is in shadow
|
||||
// float shadow = currentDepth - bias > closestDepth ? 1.0 : 0.0;
|
||||
// PCF
|
||||
float shadow = 0.0;
|
||||
vec2 texelSize = 1.0 / textureSize(shadowMap, 0);
|
||||
for(int x = -1; x <= 1; ++x)
|
||||
{
|
||||
for(int y = -1; y <= 1; ++y)
|
||||
{
|
||||
float pcfDepth = texture(shadowMap, projCoords.xy + vec2(x, y) * texelSize).r;
|
||||
shadow += currentDepth - bias > pcfDepth ? 1.0 : 0.0;
|
||||
}
|
||||
}
|
||||
shadow /= 9.0;
|
||||
|
||||
// Keep the shadow at 0.0 when outside the far_plane region of the light's frustum.
|
||||
if(projCoords.z > 1.0)
|
||||
shadow = 0.0;
|
||||
|
||||
return shadow;
|
||||
}
|
||||
|
||||
void main()
|
||||
{
|
||||
vec3 color = texture(diffuseTexture, fs_in.TexCoords).rgb;
|
||||
vec3 normal = normalize(fs_in.Normal);
|
||||
vec3 lightColor = vec3(0.3);
|
||||
// Ambient
|
||||
vec3 ambient = 0.3 * color;
|
||||
// Diffuse
|
||||
vec3 lightDir = normalize(lightPos - fs_in.FragPos);
|
||||
float diff = max(dot(lightDir, normal), 0.0);
|
||||
vec3 diffuse = diff * lightColor;
|
||||
// Specular
|
||||
vec3 viewDir = normalize(viewPos - fs_in.FragPos);
|
||||
vec3 reflectDir = reflect(-lightDir, normal);
|
||||
float spec = 0.0;
|
||||
vec3 halfwayDir = normalize(lightDir + viewDir);
|
||||
spec = pow(max(dot(normal, halfwayDir), 0.0), 64.0);
|
||||
vec3 specular = spec * lightColor;
|
||||
// Calculate shadow
|
||||
float shadow = shadows ? ShadowCalculation(fs_in.FragPosLightSpace) : 0.0;
|
||||
vec3 lighting = (ambient + (1.0 - shadow) * (diffuse + specular)) * color;
|
||||
|
||||
FragColor = vec4(lighting, 1.0f);
|
||||
}
|
||||
@@ -0,0 +1,27 @@
|
||||
#version 330 core
|
||||
layout (location = 0) in vec3 position;
|
||||
layout (location = 1) in vec3 normal;
|
||||
layout (location = 2) in vec2 texCoords;
|
||||
|
||||
out vec2 TexCoords;
|
||||
|
||||
out VS_OUT {
|
||||
vec3 FragPos;
|
||||
vec3 Normal;
|
||||
vec2 TexCoords;
|
||||
vec4 FragPosLightSpace;
|
||||
} vs_out;
|
||||
|
||||
uniform mat4 projection;
|
||||
uniform mat4 view;
|
||||
uniform mat4 model;
|
||||
uniform mat4 lightSpaceMatrix;
|
||||
|
||||
void main()
|
||||
{
|
||||
gl_Position = projection * view * model * vec4(position, 1.0f);
|
||||
vs_out.FragPos = vec3(model * vec4(position, 1.0));
|
||||
vs_out.Normal = transpose(inverse(mat3(model))) * normal;
|
||||
vs_out.TexCoords = texCoords;
|
||||
vs_out.FragPosLightSpace = lightSpaceMatrix * vec4(vs_out.FragPos, 1.0);
|
||||
}
|
||||
@@ -0,0 +1,6 @@
|
||||
#version 330 core
|
||||
|
||||
void main()
|
||||
{
|
||||
// gl_FragDepth = gl_FragCoord.z;
|
||||
}
|
||||
@@ -0,0 +1,10 @@
|
||||
#version 330 core
|
||||
layout (location = 0) in vec3 position;
|
||||
|
||||
uniform mat4 lightSpaceMatrix;
|
||||
uniform mat4 model;
|
||||
|
||||
void main()
|
||||
{
|
||||
gl_Position = lightSpaceMatrix * model * vec4(position, 1.0f);
|
||||
}
|
||||
@@ -0,0 +1,106 @@
|
||||
#version 330 core
|
||||
out vec4 FragColor;
|
||||
|
||||
in VS_OUT {
|
||||
vec3 FragPos;
|
||||
vec3 Normal;
|
||||
vec2 TexCoords;
|
||||
} fs_in;
|
||||
|
||||
uniform sampler2D diffuseTexture;
|
||||
uniform samplerCube depthMap;
|
||||
|
||||
uniform vec3 lightPos;
|
||||
uniform vec3 viewPos;
|
||||
|
||||
uniform float far_plane;
|
||||
uniform bool shadows;
|
||||
|
||||
|
||||
// array of offset direction for sampling
|
||||
vec3 gridSamplingDisk[20] = vec3[]
|
||||
(
|
||||
vec3(1, 1, 1), vec3(1, -1, 1), vec3(-1, -1, 1), vec3(-1, 1, 1),
|
||||
vec3(1, 1, -1), vec3(1, -1, -1), vec3(-1, -1, -1), vec3(-1, 1, -1),
|
||||
vec3(1, 1, 0), vec3(1, -1, 0), vec3(-1, -1, 0), vec3(-1, 1, 0),
|
||||
vec3(1, 0, 1), vec3(-1, 0, 1), vec3(1, 0, -1), vec3(-1, 0, -1),
|
||||
vec3(0, 1, 1), vec3(0, -1, 1), vec3(0, -1, -1), vec3(0, 1, -1)
|
||||
);
|
||||
|
||||
float ShadowCalculation(vec3 fragPos)
|
||||
{
|
||||
// Get vector between fragment position and light position
|
||||
vec3 fragToLight = fragPos - lightPos;
|
||||
// Use the fragment to light vector to sample from the depth map
|
||||
// float closestDepth = texture(depthMap, fragToLight).r;
|
||||
// It is currently in linear range between [0,1]. Let's re-transform it back to original depth value
|
||||
// closestDepth *= far_plane;
|
||||
// Now get current linear depth as the length between the fragment and light position
|
||||
float currentDepth = length(fragToLight);
|
||||
// Now test for shadows
|
||||
// float bias = 0.05; // We use a much larger bias since depth is now in [near_plane, far_plane] range
|
||||
// float shadow = currentDepth - bias > closestDepth ? 1.0 : 0.0;
|
||||
// PCF
|
||||
// float shadow = 0.0;
|
||||
// float bias = 0.05;
|
||||
// float samples = 4.0;
|
||||
// float offset = 0.1;
|
||||
// for(float x = -offset; x < offset; x += offset / (samples * 0.5))
|
||||
// {
|
||||
// for(float y = -offset; y < offset; y += offset / (samples * 0.5))
|
||||
// {
|
||||
// for(float z = -offset; z < offset; z += offset / (samples * 0.5))
|
||||
// {
|
||||
// float closestDepth = texture(depthMap, fragToLight + vec3(x, y, z)).r; // Use lightdir to lookup cubemap
|
||||
// closestDepth *= far_plane; // Undo mapping [0;1]
|
||||
// if(currentDepth - bias > closestDepth)
|
||||
// shadow += 1.0;
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
// shadow /= (samples * samples * samples);
|
||||
float shadow = 0.0;
|
||||
float bias = 0.15;
|
||||
int samples = 20;
|
||||
float viewDistance = length(viewPos - fragPos);
|
||||
float diskRadius = (1.0 + (viewDistance / far_plane)) / 25.0;
|
||||
for(int i = 0; i < samples; ++i)
|
||||
{
|
||||
float closestDepth = texture(depthMap, fragToLight + gridSamplingDisk[i] * diskRadius).r;
|
||||
closestDepth *= far_plane; // Undo mapping [0;1]
|
||||
if(currentDepth - bias > closestDepth)
|
||||
shadow += 1.0;
|
||||
}
|
||||
shadow /= float(samples);
|
||||
|
||||
// Display closestDepth as debug (to visualize depth cubemap)
|
||||
// FragColor = vec4(vec3(closestDepth / far_plane), 1.0);
|
||||
|
||||
// return shadow;
|
||||
return shadow;
|
||||
}
|
||||
|
||||
void main()
|
||||
{
|
||||
vec3 color = texture(diffuseTexture, fs_in.TexCoords).rgb;
|
||||
vec3 normal = normalize(fs_in.Normal);
|
||||
vec3 lightColor = vec3(0.3);
|
||||
// Ambient
|
||||
vec3 ambient = 0.3 * color;
|
||||
// Diffuse
|
||||
vec3 lightDir = normalize(lightPos - fs_in.FragPos);
|
||||
float diff = max(dot(lightDir, normal), 0.0);
|
||||
vec3 diffuse = diff * lightColor;
|
||||
// Specular
|
||||
vec3 viewDir = normalize(viewPos - fs_in.FragPos);
|
||||
vec3 reflectDir = reflect(-lightDir, normal);
|
||||
float spec = 0.0;
|
||||
vec3 halfwayDir = normalize(lightDir + viewDir);
|
||||
spec = pow(max(dot(normal, halfwayDir), 0.0), 64.0);
|
||||
vec3 specular = spec * lightColor;
|
||||
// Calculate shadow
|
||||
float shadow = shadows ? ShadowCalculation(fs_in.FragPos) : 0.0;
|
||||
vec3 lighting = (ambient + (1.0 - shadow) * (diffuse + specular)) * color;
|
||||
|
||||
FragColor = vec4(lighting, 1.0f);
|
||||
}
|
||||
@@ -0,0 +1,29 @@
|
||||
#version 330 core
|
||||
layout (location = 0) in vec3 position;
|
||||
layout (location = 1) in vec3 normal;
|
||||
layout (location = 2) in vec2 texCoords;
|
||||
|
||||
out vec2 TexCoords;
|
||||
|
||||
out VS_OUT {
|
||||
vec3 FragPos;
|
||||
vec3 Normal;
|
||||
vec2 TexCoords;
|
||||
} vs_out;
|
||||
|
||||
uniform mat4 projection;
|
||||
uniform mat4 view;
|
||||
uniform mat4 model;
|
||||
|
||||
uniform bool reverse_normals;
|
||||
|
||||
void main()
|
||||
{
|
||||
gl_Position = projection * view * model * vec4(position, 1.0f);
|
||||
vs_out.FragPos = vec3(model * vec4(position, 1.0));
|
||||
if(reverse_normals) // A slight hack to make sure the outer large cube displays lighting from the 'inside' instead of the default 'outside'.
|
||||
vs_out.Normal = transpose(inverse(mat3(model))) * (-1.0 * normal);
|
||||
else
|
||||
vs_out.Normal = transpose(inverse(mat3(model))) * normal;
|
||||
vs_out.TexCoords = texCoords;
|
||||
}
|
||||
@@ -0,0 +1,16 @@
|
||||
#version 330 core
|
||||
in vec4 FragPos;
|
||||
|
||||
uniform vec3 lightPos;
|
||||
uniform float far_plane;
|
||||
|
||||
void main()
|
||||
{
|
||||
float lightDistance = length(FragPos.xyz - lightPos);
|
||||
|
||||
// map to [0;1] range by dividing by far_plane
|
||||
lightDistance = lightDistance / far_plane;
|
||||
|
||||
// Write this as modified depth
|
||||
gl_FragDepth = lightDistance;
|
||||
}
|
||||
@@ -0,0 +1,22 @@
|
||||
#version 330 core
|
||||
layout (triangles) in;
|
||||
layout (triangle_strip, max_vertices=18) out;
|
||||
|
||||
uniform mat4 shadowTransforms[6];
|
||||
|
||||
out vec4 FragPos; // FragPos from GS (output per emitvertex)
|
||||
|
||||
void main()
|
||||
{
|
||||
for(int face = 0; face < 6; ++face)
|
||||
{
|
||||
gl_Layer = face; // built-in variable that specifies to which face we render.
|
||||
for(int i = 0; i < 3; ++i) // for each triangle's vertices
|
||||
{
|
||||
FragPos = gl_in[i].gl_Position;
|
||||
gl_Position = shadowTransforms[face] * FragPos;
|
||||
EmitVertex();
|
||||
}
|
||||
EndPrimitive();
|
||||
}
|
||||
}
|
||||
@@ -0,0 +1,9 @@
|
||||
#version 330 core
|
||||
layout (location = 0) in vec3 position;
|
||||
|
||||
uniform mat4 model;
|
||||
|
||||
void main()
|
||||
{
|
||||
gl_Position = model * vec4(position, 1.0);
|
||||
}
|
||||
@@ -0,0 +1,390 @@
|
||||
// GLEW
|
||||
#define GLEW_STATIC
|
||||
#include <GL/glew.h>
|
||||
|
||||
// GLFW
|
||||
#include <GLFW/glfw3.h>
|
||||
|
||||
// GL includes
|
||||
#include <learnopengl/shader.h>
|
||||
#include <learnopengl/camera.h>
|
||||
|
||||
// GLM Mathemtics
|
||||
#include <glm/glm.hpp>
|
||||
#include <glm/gtc/matrix_transform.hpp>
|
||||
#include <glm/gtc/type_ptr.hpp>
|
||||
|
||||
// Other Libs
|
||||
#include <SOIL.h>
|
||||
#include <learnopengl/filesystem.h>
|
||||
|
||||
// Properties
|
||||
const GLuint SCR_WIDTH = 800, SCR_HEIGHT = 600;
|
||||
|
||||
// Function prototypes
|
||||
void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode);
|
||||
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);
|
||||
void mouse_callback(GLFWwindow* window, double xpos, double ypos);
|
||||
void Do_Movement();
|
||||
GLuint loadTexture(GLchar const * path);
|
||||
void RenderScene(Shader &shader);
|
||||
void RenderCube();
|
||||
void RenderQuad();
|
||||
|
||||
// Camera
|
||||
Camera camera(glm::vec3(0.0f, 0.0f, 3.0f));
|
||||
|
||||
// Delta
|
||||
GLfloat deltaTime = 0.0f;
|
||||
GLfloat lastFrame = 0.0f;
|
||||
|
||||
// Options
|
||||
GLboolean shadows = true;
|
||||
|
||||
// Global variables
|
||||
GLuint woodTexture;
|
||||
GLuint planeVAO;
|
||||
|
||||
// The MAIN function, from here we start our application and run our Game loop
|
||||
int main()
|
||||
{
|
||||
// Init GLFW
|
||||
glfwInit();
|
||||
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
|
||||
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
|
||||
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
|
||||
glfwWindowHint(GLFW_RESIZABLE, GL_FALSE);
|
||||
|
||||
GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", nullptr, nullptr); // Windowed
|
||||
glfwMakeContextCurrent(window);
|
||||
|
||||
// Set the required callback functions
|
||||
glfwSetKeyCallback(window, key_callback);
|
||||
glfwSetCursorPosCallback(window, mouse_callback);
|
||||
glfwSetScrollCallback(window, scroll_callback);
|
||||
|
||||
// Options
|
||||
glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);
|
||||
|
||||
// Initialize GLEW to setup the OpenGL Function pointers
|
||||
glewExperimental = GL_TRUE;
|
||||
glewInit();
|
||||
|
||||
// Define the viewport dimensions
|
||||
glViewport(0, 0, SCR_WIDTH, SCR_HEIGHT);
|
||||
|
||||
// Setup some OpenGL options
|
||||
glEnable(GL_DEPTH_TEST);
|
||||
glEnable(GL_CULL_FACE);
|
||||
|
||||
// Setup and compile our shaders
|
||||
Shader shader("point_shadows.vs", "point_shadows.frag");
|
||||
Shader simpleDepthShader("point_shadows_depth.vs", "point_shadows_depth.frag", "point_shadows_depth.gs");
|
||||
|
||||
// Set texture samples
|
||||
shader.Use();
|
||||
glUniform1i(glGetUniformLocation(shader.Program, "diffuseTexture"), 0);
|
||||
glUniform1i(glGetUniformLocation(shader.Program, "depthMap"), 1);
|
||||
|
||||
// Light source
|
||||
glm::vec3 lightPos(0.0f, 0.0f, 0.0f);
|
||||
|
||||
// Load textures
|
||||
woodTexture = loadTexture(FileSystem::getPath("resources/textures/wood.png").c_str());
|
||||
|
||||
// Configure depth map FBO
|
||||
const GLuint SHADOW_WIDTH = 1024, SHADOW_HEIGHT = 1024;
|
||||
GLuint depthMapFBO;
|
||||
glGenFramebuffers(1, &depthMapFBO);
|
||||
// Create depth cubemap texture
|
||||
GLuint depthCubemap;
|
||||
glGenTextures(1, &depthCubemap);
|
||||
glBindTexture(GL_TEXTURE_CUBE_MAP, depthCubemap);
|
||||
for (GLuint i = 0; i < 6; ++i)
|
||||
glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, GL_DEPTH_COMPONENT, SHADOW_WIDTH, SHADOW_HEIGHT, 0, GL_DEPTH_COMPONENT, GL_FLOAT, NULL);
|
||||
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
|
||||
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
|
||||
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
|
||||
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
|
||||
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
|
||||
// Attach cubemap as depth map FBO's color buffer
|
||||
glBindFramebuffer(GL_FRAMEBUFFER, depthMapFBO);
|
||||
glFramebufferTexture(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, depthCubemap, 0);
|
||||
glDrawBuffer(GL_NONE);
|
||||
glReadBuffer(GL_NONE);
|
||||
if (glCheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE)
|
||||
std::cout << "Framebuffer not complete!" << std::endl;
|
||||
glBindFramebuffer(GL_FRAMEBUFFER, 0);
|
||||
|
||||
glClearColor(0.1f, 0.1f, 0.1f, 1.0f);
|
||||
|
||||
// Game loop
|
||||
while (!glfwWindowShouldClose(window))
|
||||
{
|
||||
// Set frame time
|
||||
GLfloat currentFrame = glfwGetTime();
|
||||
deltaTime = currentFrame - lastFrame;
|
||||
lastFrame = currentFrame;
|
||||
|
||||
// Check and call events
|
||||
glfwPollEvents();
|
||||
Do_Movement();
|
||||
|
||||
// Move light position over time
|
||||
//lightPos.z = sin(glfwGetTime() * 0.5) * 3.0;
|
||||
|
||||
// 0. Create depth cubemap transformation matrices
|
||||
GLfloat aspect = (GLfloat)SHADOW_WIDTH / (GLfloat)SHADOW_HEIGHT;
|
||||
GLfloat near = 1.0f;
|
||||
GLfloat far = 25.0f;
|
||||
glm::mat4 shadowProj = glm::perspective(90.0f, aspect, near, far);
|
||||
std::vector<glm::mat4> shadowTransforms;
|
||||
shadowTransforms.push_back(shadowProj * glm::lookAt(lightPos, lightPos + glm::vec3( 1.0, 0.0, 0.0), glm::vec3(0.0, -1.0, 0.0)));
|
||||
shadowTransforms.push_back(shadowProj * glm::lookAt(lightPos, lightPos + glm::vec3(-1.0, 0.0, 0.0), glm::vec3(0.0, -1.0, 0.0)));
|
||||
shadowTransforms.push_back(shadowProj * glm::lookAt(lightPos, lightPos + glm::vec3( 0.0, 1.0, 0.0), glm::vec3(0.0, 0.0, 1.0)));
|
||||
shadowTransforms.push_back(shadowProj * glm::lookAt(lightPos, lightPos + glm::vec3( 0.0, -1.0, 0.0), glm::vec3(0.0, 0.0, -1.0)));
|
||||
shadowTransforms.push_back(shadowProj * glm::lookAt(lightPos, lightPos + glm::vec3( 0.0, 0.0, 1.0), glm::vec3(0.0, -1.0, 0.0)));
|
||||
shadowTransforms.push_back(shadowProj * glm::lookAt(lightPos, lightPos + glm::vec3( 0.0, 0.0, -1.0), glm::vec3(0.0, -1.0, 0.0)));
|
||||
|
||||
// 1. Render scene to depth cubemap
|
||||
glViewport(0, 0, SHADOW_WIDTH, SHADOW_HEIGHT);
|
||||
glBindFramebuffer(GL_FRAMEBUFFER, depthMapFBO);
|
||||
glClear(GL_DEPTH_BUFFER_BIT);
|
||||
simpleDepthShader.Use();
|
||||
for (GLuint i = 0; i < 6; ++i)
|
||||
glUniformMatrix4fv(glGetUniformLocation(simpleDepthShader.Program, ("shadowTransforms[" + std::to_string(i) + "]").c_str()), 1, GL_FALSE, glm::value_ptr(shadowTransforms[i]));
|
||||
glUniform1f(glGetUniformLocation(simpleDepthShader.Program, "far_plane"), far);
|
||||
glUniform3fv(glGetUniformLocation(simpleDepthShader.Program, "lightPos"), 1, &lightPos[0]);
|
||||
RenderScene(simpleDepthShader);
|
||||
glBindFramebuffer(GL_FRAMEBUFFER, 0);
|
||||
|
||||
// 2. Render scene as normal
|
||||
glViewport(0, 0, SCR_WIDTH, SCR_HEIGHT);
|
||||
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
|
||||
shader.Use();
|
||||
glm::mat4 projection = glm::perspective(camera.Zoom, (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f);
|
||||
glm::mat4 view = camera.GetViewMatrix();
|
||||
glUniformMatrix4fv(glGetUniformLocation(shader.Program, "projection"), 1, GL_FALSE, glm::value_ptr(projection));
|
||||
glUniformMatrix4fv(glGetUniformLocation(shader.Program, "view"), 1, GL_FALSE, glm::value_ptr(view));
|
||||
// Set light uniforms
|
||||
glUniform3fv(glGetUniformLocation(shader.Program, "lightPos"), 1, &lightPos[0]);
|
||||
glUniform3fv(glGetUniformLocation(shader.Program, "viewPos"), 1, &camera.Position[0]);
|
||||
// Enable/Disable shadows by pressing 'SPACE'
|
||||
glUniform1i(glGetUniformLocation(shader.Program, "shadows"), shadows);
|
||||
glUniform1f(glGetUniformLocation(shader.Program, "far_plane"), far);
|
||||
glActiveTexture(GL_TEXTURE0);
|
||||
glBindTexture(GL_TEXTURE_2D, woodTexture);
|
||||
glActiveTexture(GL_TEXTURE1);
|
||||
glBindTexture(GL_TEXTURE_CUBE_MAP, depthCubemap);
|
||||
RenderScene(shader);
|
||||
|
||||
// Swap the buffers
|
||||
glfwSwapBuffers(window);
|
||||
}
|
||||
|
||||
glfwTerminate();
|
||||
return 0;
|
||||
}
|
||||
|
||||
void RenderScene(Shader &shader)
|
||||
{
|
||||
// Room cube
|
||||
glm::mat4 model;
|
||||
model = glm::scale(model, glm::vec3(10.0));
|
||||
glUniformMatrix4fv(glGetUniformLocation(shader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
|
||||
glDisable(GL_CULL_FACE); // Note that we disable culling here since we render 'inside' the cube instead of the usual 'outside' which throws off the normal culling methods.
|
||||
glUniform1i(glGetUniformLocation(shader.Program, "reverse_normals"), 1); // A small little hack to invert normals when drawing cube from the inside so lighting still works.
|
||||
RenderCube();
|
||||
glUniform1i(glGetUniformLocation(shader.Program, "reverse_normals"), 0); // And of course disable it
|
||||
glEnable(GL_CULL_FACE);
|
||||
// Cubes
|
||||
model = glm::mat4();
|
||||
model = glm::translate(model, glm::vec3(4.0f, -3.5f, 0.0));
|
||||
glUniformMatrix4fv(glGetUniformLocation(shader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
|
||||
RenderCube();
|
||||
model = glm::mat4();
|
||||
model = glm::translate(model, glm::vec3(2.0f, 3.0f, 1.0));
|
||||
model = glm::scale(model, glm::vec3(1.5));
|
||||
glUniformMatrix4fv(glGetUniformLocation(shader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
|
||||
RenderCube();
|
||||
model = glm::mat4();
|
||||
model = glm::translate(model, glm::vec3(-3.0f, -1.0f, 0.0));
|
||||
glUniformMatrix4fv(glGetUniformLocation(shader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
|
||||
RenderCube();
|
||||
model = glm::mat4();
|
||||
model = glm::translate(model, glm::vec3(-1.5f, 1.0f, 1.5));
|
||||
glUniformMatrix4fv(glGetUniformLocation(shader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
|
||||
RenderCube();
|
||||
model = glm::mat4();
|
||||
model = glm::translate(model, glm::vec3(-1.5f, 2.0f, -3.0));
|
||||
model = glm::rotate(model, 60.0f, glm::normalize(glm::vec3(1.0, 0.0, 1.0)));
|
||||
model = glm::scale(model, glm::vec3(1.5));
|
||||
glUniformMatrix4fv(glGetUniformLocation(shader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
|
||||
RenderCube();
|
||||
}
|
||||
|
||||
|
||||
// RenderCube() Renders a 1x1 3D cube in NDC.
|
||||
GLuint cubeVAO = 0;
|
||||
GLuint cubeVBO = 0;
|
||||
void RenderCube()
|
||||
{
|
||||
// Initialize (if necessary)
|
||||
if (cubeVAO == 0)
|
||||
{
|
||||
GLfloat vertices[] = {
|
||||
// Back face
|
||||
-0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, // Bottom-left
|
||||
0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f, // top-right
|
||||
0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 1.0f, 0.0f, // bottom-right
|
||||
0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f, // top-right
|
||||
-0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, // bottom-left
|
||||
-0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 0.0f, 1.0f,// top-left
|
||||
// Front face
|
||||
-0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, // bottom-left
|
||||
0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, // bottom-right
|
||||
0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, // top-right
|
||||
0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, // top-right
|
||||
-0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, // top-left
|
||||
-0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, // bottom-left
|
||||
// Left face
|
||||
-0.5f, 0.5f, 0.5f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-right
|
||||
-0.5f, 0.5f, -0.5f, -1.0f, 0.0f, 0.0f, 1.0f, 1.0f, // top-left
|
||||
-0.5f, -0.5f, -0.5f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-left
|
||||
-0.5f, -0.5f, -0.5f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-left
|
||||
-0.5f, -0.5f, 0.5f, -1.0f, 0.0f, 0.0f, 0.0f, 0.0f, // bottom-right
|
||||
-0.5f, 0.5f, 0.5f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-right
|
||||
// Right face
|
||||
0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-left
|
||||
0.5f, -0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-right
|
||||
0.5f, 0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, // top-right
|
||||
0.5f, -0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-right
|
||||
0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-left
|
||||
0.5f, -0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, // bottom-left
|
||||
// Bottom face
|
||||
-0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f, // top-right
|
||||
0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, 1.0f, 1.0f, // top-left
|
||||
0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f,// bottom-left
|
||||
0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f, // bottom-left
|
||||
-0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, 0.0f, 0.0f, // bottom-right
|
||||
-0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f, // top-right
|
||||
// Top face
|
||||
-0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f,// top-left
|
||||
0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, // bottom-right
|
||||
0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, // top-right
|
||||
0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, // bottom-right
|
||||
-0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f,// top-left
|
||||
-0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f // bottom-left
|
||||
};
|
||||
glGenVertexArrays(1, &cubeVAO);
|
||||
glGenBuffers(1, &cubeVBO);
|
||||
// Fill buffer
|
||||
glBindBuffer(GL_ARRAY_BUFFER, cubeVBO);
|
||||
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
|
||||
// Link vertex attributes
|
||||
glBindVertexArray(cubeVAO);
|
||||
glEnableVertexAttribArray(0);
|
||||
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)0);
|
||||
glEnableVertexAttribArray(1);
|
||||
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)(3 * sizeof(GLfloat)));
|
||||
glEnableVertexAttribArray(2);
|
||||
glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)(6 * sizeof(GLfloat)));
|
||||
glBindBuffer(GL_ARRAY_BUFFER, 0);
|
||||
glBindVertexArray(0);
|
||||
}
|
||||
// Render Cube
|
||||
glBindVertexArray(cubeVAO);
|
||||
glDrawArrays(GL_TRIANGLES, 0, 36);
|
||||
glBindVertexArray(0);
|
||||
}
|
||||
|
||||
// This function loads a texture from file. Note: texture loading functions like these are usually
|
||||
// managed by a 'Resource Manager' that manages all resources (like textures, models, audio).
|
||||
// For learning purposes we'll just define it as a utility function.
|
||||
GLuint loadTexture(GLchar const * path)
|
||||
{
|
||||
// Generate texture ID and load texture data
|
||||
GLuint textureID;
|
||||
glGenTextures(1, &textureID);
|
||||
int width, height;
|
||||
unsigned char* image = SOIL_load_image(path, &width, &height, 0, SOIL_LOAD_RGB);
|
||||
// Assign texture to ID
|
||||
glBindTexture(GL_TEXTURE_2D, textureID);
|
||||
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, image);
|
||||
glGenerateMipmap(GL_TEXTURE_2D);
|
||||
|
||||
// Parameters
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
|
||||
glBindTexture(GL_TEXTURE_2D, 0);
|
||||
SOIL_free_image_data(image);
|
||||
return textureID;
|
||||
|
||||
}
|
||||
|
||||
bool keys[1024];
|
||||
bool keysPressed[1024];
|
||||
// Moves/alters the camera positions based on user input
|
||||
void Do_Movement()
|
||||
{
|
||||
// Camera controls
|
||||
if (keys[GLFW_KEY_W])
|
||||
camera.ProcessKeyboard(FORWARD, deltaTime);
|
||||
if (keys[GLFW_KEY_S])
|
||||
camera.ProcessKeyboard(BACKWARD, deltaTime);
|
||||
if (keys[GLFW_KEY_A])
|
||||
camera.ProcessKeyboard(LEFT, deltaTime);
|
||||
if (keys[GLFW_KEY_D])
|
||||
camera.ProcessKeyboard(RIGHT, deltaTime);
|
||||
|
||||
if (keys[GLFW_KEY_SPACE] && !keysPressed[GLFW_KEY_SPACE])
|
||||
{
|
||||
shadows = !shadows;
|
||||
keysPressed[GLFW_KEY_SPACE] = true;
|
||||
}
|
||||
}
|
||||
|
||||
GLfloat lastX = 400, lastY = 300;
|
||||
bool firstMouse = true;
|
||||
// Is called whenever a key is pressed/released via GLFW
|
||||
void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode)
|
||||
{
|
||||
if (key == GLFW_KEY_ESCAPE && action == GLFW_PRESS)
|
||||
glfwSetWindowShouldClose(window, GL_TRUE);
|
||||
|
||||
if (key >= 0 && key <= 1024)
|
||||
{
|
||||
if (action == GLFW_PRESS)
|
||||
keys[key] = true;
|
||||
else if (action == GLFW_RELEASE)
|
||||
{
|
||||
keys[key] = false;
|
||||
keysPressed[key] = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void mouse_callback(GLFWwindow* window, double xpos, double ypos)
|
||||
{
|
||||
if (firstMouse)
|
||||
{
|
||||
lastX = xpos;
|
||||
lastY = ypos;
|
||||
firstMouse = false;
|
||||
}
|
||||
|
||||
GLfloat xoffset = xpos - lastX;
|
||||
GLfloat yoffset = lastY - ypos;
|
||||
|
||||
lastX = xpos;
|
||||
lastY = ypos;
|
||||
|
||||
camera.ProcessMouseMovement(xoffset, yoffset);
|
||||
}
|
||||
|
||||
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
|
||||
{
|
||||
camera.ProcessMouseScroll(yoffset);
|
||||
}
|
||||
@@ -0,0 +1,96 @@
|
||||
#version 330 core
|
||||
out vec4 FragColor;
|
||||
|
||||
in VS_OUT {
|
||||
vec3 FragPos;
|
||||
vec2 TexCoords;
|
||||
vec3 TangentLightPos;
|
||||
vec3 TangentViewPos;
|
||||
vec3 TangentFragPos;
|
||||
} fs_in;
|
||||
|
||||
uniform sampler2D diffuseMap;
|
||||
uniform sampler2D normalMap;
|
||||
uniform sampler2D depthMap;
|
||||
|
||||
uniform bool parallax;
|
||||
uniform float height_scale;
|
||||
|
||||
vec2 ParallaxMapping(vec2 texCoords, vec3 viewDir)
|
||||
{
|
||||
// float height = texture(depthMap, texCoords).r;
|
||||
// return texCoords - viewDir.xy * (height * height_scale);
|
||||
|
||||
// number of depth layers
|
||||
const float minLayers = 8;
|
||||
const float maxLayers = 32;
|
||||
float numLayers = mix(maxLayers, minLayers, abs(dot(vec3(0.0, 0.0, 1.0), viewDir)));
|
||||
// calculate the size of each layer
|
||||
float layerDepth = 1.0 / numLayers;
|
||||
// depth of current layer
|
||||
float currentLayerDepth = 0.0;
|
||||
// the amount to shift the texture coordinates per layer (from vector P)
|
||||
vec2 P = viewDir.xy / viewDir.z * height_scale;
|
||||
vec2 deltaTexCoords = P / numLayers;
|
||||
|
||||
// get initial values
|
||||
vec2 currentTexCoords = texCoords;
|
||||
float currentDepthMapValue = texture(depthMap, currentTexCoords).r;
|
||||
|
||||
while(currentLayerDepth < currentDepthMapValue)
|
||||
{
|
||||
// shift texture coordinates along direction of P
|
||||
currentTexCoords -= deltaTexCoords;
|
||||
// get depthmap value at current texture coordinates
|
||||
currentDepthMapValue = texture(depthMap, currentTexCoords).r;
|
||||
// get depth of next layer
|
||||
currentLayerDepth += layerDepth;
|
||||
}
|
||||
|
||||
// -- parallax occlusion mapping interpolation from here on
|
||||
// get texture coordinates before collision (reverse operations)
|
||||
vec2 prevTexCoords = currentTexCoords + deltaTexCoords;
|
||||
|
||||
// get depth after and before collision for linear interpolation
|
||||
float afterDepth = currentDepthMapValue - currentLayerDepth;
|
||||
float beforeDepth = texture(depthMap, prevTexCoords).r - currentLayerDepth + layerDepth;
|
||||
|
||||
// interpolation of texture coordinates
|
||||
float weight = afterDepth / (afterDepth - beforeDepth);
|
||||
vec2 finalTexCoords = prevTexCoords * weight + currentTexCoords * (1.0 - weight);
|
||||
|
||||
return finalTexCoords;
|
||||
// return currentTexCoords;
|
||||
}
|
||||
|
||||
void main()
|
||||
{
|
||||
// Offset texture coordinates with Parallax Mapping
|
||||
vec3 viewDir = normalize(fs_in.TangentViewPos - fs_in.TangentFragPos);
|
||||
vec2 texCoords = fs_in.TexCoords;
|
||||
if(parallax)
|
||||
texCoords = ParallaxMapping(fs_in.TexCoords, viewDir);
|
||||
|
||||
if(texCoords.x > 1.0 || texCoords.y > 1.0 || texCoords.x < 0.0 || texCoords.y < 0.0)
|
||||
discard;
|
||||
|
||||
// Obtain normal from normal map
|
||||
vec3 normal = texture(normalMap, texCoords).rgb;
|
||||
normal = normalize(normal * 2.0 - 1.0);
|
||||
|
||||
// Get diffuse color
|
||||
vec3 color = texture(diffuseMap, texCoords).rgb;
|
||||
// Ambient
|
||||
vec3 ambient = 0.1 * color;
|
||||
// Diffuse
|
||||
vec3 lightDir = normalize(fs_in.TangentLightPos - fs_in.TangentFragPos);
|
||||
float diff = max(dot(lightDir, normal), 0.0);
|
||||
vec3 diffuse = diff * color;
|
||||
// Specular
|
||||
vec3 reflectDir = reflect(-lightDir, normal);
|
||||
vec3 halfwayDir = normalize(lightDir + viewDir);
|
||||
float spec = pow(max(dot(normal, halfwayDir), 0.0), 32.0);
|
||||
|
||||
vec3 specular = vec3(0.2) * spec;
|
||||
FragColor = vec4(ambient + diffuse + specular, 1.0f);
|
||||
}
|
||||
@@ -0,0 +1,38 @@
|
||||
#version 330 core
|
||||
layout (location = 0) in vec3 position;
|
||||
layout (location = 1) in vec3 normal;
|
||||
layout (location = 2) in vec2 texCoords;
|
||||
layout (location = 3) in vec3 tangent;
|
||||
layout (location = 4) in vec3 bitangent;
|
||||
|
||||
out VS_OUT {
|
||||
vec3 FragPos;
|
||||
vec2 TexCoords;
|
||||
vec3 TangentLightPos;
|
||||
vec3 TangentViewPos;
|
||||
vec3 TangentFragPos;
|
||||
} vs_out;
|
||||
|
||||
uniform mat4 projection;
|
||||
uniform mat4 view;
|
||||
uniform mat4 model;
|
||||
|
||||
uniform vec3 lightPos;
|
||||
uniform vec3 viewPos;
|
||||
|
||||
void main()
|
||||
{
|
||||
gl_Position = projection * view * model * vec4(position, 1.0f);
|
||||
vs_out.FragPos = vec3(model * vec4(position, 1.0));
|
||||
vs_out.TexCoords = texCoords;
|
||||
|
||||
|
||||
vec3 T = normalize(mat3(model) * tangent);
|
||||
vec3 B = normalize(mat3(model) * bitangent);
|
||||
vec3 N = normalize(mat3(model) * normal);
|
||||
mat3 TBN = transpose(mat3(T, B, N));
|
||||
|
||||
vs_out.TangentLightPos = TBN * lightPos;
|
||||
vs_out.TangentViewPos = TBN * viewPos;
|
||||
vs_out.TangentFragPos = TBN * vs_out.FragPos;
|
||||
}
|
||||
@@ -0,0 +1,342 @@
|
||||
// Std. Includes
|
||||
#include <string>
|
||||
|
||||
// GLEW
|
||||
#define GLEW_STATIC
|
||||
#include <GL/glew.h>
|
||||
|
||||
// GLFW
|
||||
#include <GLFW/glfw3.h>
|
||||
|
||||
// GL includes
|
||||
#include <learnopengl/shader.h>
|
||||
#include <learnopengl/camera.h>
|
||||
#include <learnopengl/model.h>
|
||||
|
||||
// GLM Mathemtics
|
||||
#include <glm/glm.hpp>
|
||||
#include <glm/gtc/matrix_transform.hpp>
|
||||
#include <glm/gtc/type_ptr.hpp>
|
||||
|
||||
// Other Libs
|
||||
#include <SOIL.h>
|
||||
#include <learnopengl/filesystem.h>
|
||||
|
||||
// Properties
|
||||
const GLuint SCR_WIDTH = 800, SCR_HEIGHT = 600;
|
||||
|
||||
// Function prototypes
|
||||
void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode);
|
||||
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);
|
||||
void mouse_callback(GLFWwindow* window, double xpos, double ypos);
|
||||
void Do_Movement();
|
||||
GLuint loadTexture(GLchar const * path);
|
||||
void RenderQuad();
|
||||
|
||||
// Camera
|
||||
Camera camera(glm::vec3(0.0f, 0.0f, 3.0f));
|
||||
|
||||
GLfloat deltaTime = 0.0f;
|
||||
GLfloat lastFrame = 0.0f;
|
||||
|
||||
GLboolean parallax_mapping = true;
|
||||
GLfloat height_scale = 0.1;
|
||||
|
||||
// The MAIN function, from here we start our application and run our Game loop
|
||||
int main()
|
||||
{
|
||||
// Init GLFW
|
||||
glfwInit();
|
||||
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
|
||||
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
|
||||
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
|
||||
glfwWindowHint(GLFW_RESIZABLE, GL_FALSE);
|
||||
|
||||
GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", nullptr, nullptr); // Windowed
|
||||
glfwMakeContextCurrent(window);
|
||||
|
||||
// Set the required callback functions
|
||||
glfwSetKeyCallback(window, key_callback);
|
||||
glfwSetCursorPosCallback(window, mouse_callback);
|
||||
glfwSetScrollCallback(window, scroll_callback);
|
||||
|
||||
// Options
|
||||
glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);
|
||||
|
||||
// Initialize GLEW to setup the OpenGL Function pointers
|
||||
glewExperimental = GL_TRUE;
|
||||
glewInit();
|
||||
|
||||
// Define the viewport dimensions
|
||||
glViewport(0, 0, SCR_WIDTH, SCR_HEIGHT);
|
||||
|
||||
// Setup some OpenGL options
|
||||
glEnable(GL_DEPTH_TEST);
|
||||
|
||||
// Setup and compile our shaders
|
||||
Shader shader("parallax_mapping.vs", "parallax_mapping.frag");
|
||||
|
||||
// Load textures
|
||||
GLuint diffuseMap = loadTexture(FileSystem::getPath("resources/textures/bricks2.jpg").c_str());
|
||||
GLuint normalMap = loadTexture(FileSystem::getPath("resources/textures/bricks2_normal.jpg").c_str());
|
||||
GLuint heightMap = loadTexture(FileSystem::getPath("resources/textures/bricks2_disp.jpg").c_str());
|
||||
//GLuint diffuseMap = loadTexture(FileSystem::getPath("resources/textures/wood.png").c_str();
|
||||
//GLuint normalMap = loadTexture(FileSystem::getPath("resources/textures/toy_box_normal.png").c_str());
|
||||
//GLuint heightMap = loadTexture(FileSystem::getPath("resources/textures/toy_box_disp.png").c_str());
|
||||
|
||||
// Set texture units
|
||||
shader.Use();
|
||||
glUniform1i(glGetUniformLocation(shader.Program, "diffuseMap"), 0);
|
||||
glUniform1i(glGetUniformLocation(shader.Program, "normalMap"), 1);
|
||||
glUniform1i(glGetUniformLocation(shader.Program, "depthMap"), 2);
|
||||
|
||||
// Light position
|
||||
glm::vec3 lightPos(0.5f, 1.0f, 0.3f);
|
||||
|
||||
// Game loop
|
||||
while (!glfwWindowShouldClose(window))
|
||||
{
|
||||
// Set frame time
|
||||
GLfloat currentFrame = glfwGetTime();
|
||||
deltaTime = currentFrame - lastFrame;
|
||||
lastFrame = currentFrame;
|
||||
|
||||
// Check and call events
|
||||
glfwPollEvents();
|
||||
Do_Movement();
|
||||
|
||||
// Clear the colorbuffer
|
||||
glClearColor(0.1f, 0.1f, 0.1f, 1.0f);
|
||||
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
|
||||
|
||||
// Configure view/projection matrices
|
||||
shader.Use();
|
||||
glm::mat4 view = camera.GetViewMatrix();
|
||||
glm::mat4 projection = glm::perspective(camera.Zoom, (GLfloat)SCR_WIDTH / (GLfloat)SCR_HEIGHT, 0.1f, 100.0f);
|
||||
glUniformMatrix4fv(glGetUniformLocation(shader.Program, "view"), 1, GL_FALSE, glm::value_ptr(view));
|
||||
glUniformMatrix4fv(glGetUniformLocation(shader.Program, "projection"), 1, GL_FALSE, glm::value_ptr(projection));
|
||||
// Render normal-mapped quad
|
||||
glm::mat4 model;
|
||||
//model = glm::rotate(model, (GLfloat)glfwGetTime() * -10, glm::normalize(glm::vec3(1.0, 0.0, 1.0))); // Rotates the quad to show parallax mapping works in all directions
|
||||
glUniformMatrix4fv(glGetUniformLocation(shader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
|
||||
glUniform3fv(glGetUniformLocation(shader.Program, "lightPos"), 1, &lightPos[0]);
|
||||
glUniform3fv(glGetUniformLocation(shader.Program, "viewPos"), 1, &camera.Position[0]);
|
||||
glUniform1f(glGetUniformLocation(shader.Program, "height_scale"), height_scale);
|
||||
glUniform1i(glGetUniformLocation(shader.Program, "parallax"), parallax_mapping);
|
||||
glActiveTexture(GL_TEXTURE0);
|
||||
glBindTexture(GL_TEXTURE_2D, diffuseMap);
|
||||
glActiveTexture(GL_TEXTURE1);
|
||||
glBindTexture(GL_TEXTURE_2D, normalMap);
|
||||
glActiveTexture(GL_TEXTURE2);
|
||||
glBindTexture(GL_TEXTURE_2D, heightMap);
|
||||
RenderQuad();
|
||||
|
||||
// render light source (simply renders a smaller plane at the light's position for debugging/visualization)
|
||||
model = glm::mat4();
|
||||
model = glm::translate(model, lightPos);
|
||||
model = glm::scale(model, glm::vec3(0.1f));
|
||||
glUniformMatrix4fv(glGetUniformLocation(shader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
|
||||
//RenderQuad();
|
||||
|
||||
// Swap the buffers
|
||||
glfwSwapBuffers(window);
|
||||
}
|
||||
|
||||
glfwTerminate();
|
||||
return 0;
|
||||
}
|
||||
|
||||
// RenderQuad() Renders a 1x1 quad in NDC
|
||||
GLuint quadVAO = 0;
|
||||
GLuint quadVBO;
|
||||
void RenderQuad()
|
||||
{
|
||||
if (quadVAO == 0)
|
||||
{
|
||||
// positions
|
||||
glm::vec3 pos1(-1.0, 1.0, 0.0);
|
||||
glm::vec3 pos2(-1.0, -1.0, 0.0);
|
||||
glm::vec3 pos3(1.0, -1.0, 0.0);
|
||||
glm::vec3 pos4(1.0, 1.0, 0.0);
|
||||
// texture coordinates
|
||||
glm::vec2 uv1(0.0, 1.0);
|
||||
glm::vec2 uv2(0.0, 0.0);
|
||||
glm::vec2 uv3(1.0, 0.0);
|
||||
glm::vec2 uv4(1.0, 1.0);
|
||||
// normal vector
|
||||
glm::vec3 nm(0.0, 0.0, 1.0);
|
||||
|
||||
// calculate tangent/bitangent vectors of both triangles
|
||||
glm::vec3 tangent1, bitangent1;
|
||||
glm::vec3 tangent2, bitangent2;
|
||||
// - triangle 1
|
||||
glm::vec3 edge1 = pos2 - pos1;
|
||||
glm::vec3 edge2 = pos3 - pos1;
|
||||
glm::vec2 deltaUV1 = uv2 - uv1;
|
||||
glm::vec2 deltaUV2 = uv3 - uv1;
|
||||
|
||||
GLfloat f = 1.0f / (deltaUV1.x * deltaUV2.y - deltaUV2.x * deltaUV1.y);
|
||||
|
||||
tangent1.x = f * (deltaUV2.y * edge1.x - deltaUV1.y * edge2.x);
|
||||
tangent1.y = f * (deltaUV2.y * edge1.y - deltaUV1.y * edge2.y);
|
||||
tangent1.z = f * (deltaUV2.y * edge1.z - deltaUV1.y * edge2.z);
|
||||
tangent1 = glm::normalize(tangent1);
|
||||
|
||||
bitangent1.x = f * (-deltaUV2.x * edge1.x + deltaUV1.x * edge2.x);
|
||||
bitangent1.y = f * (-deltaUV2.x * edge1.y + deltaUV1.x * edge2.y);
|
||||
bitangent1.z = f * (-deltaUV2.x * edge1.z + deltaUV1.x * edge2.z);
|
||||
bitangent1 = glm::normalize(bitangent1);
|
||||
|
||||
// - triangle 2
|
||||
edge1 = pos3 - pos1;
|
||||
edge2 = pos4 - pos1;
|
||||
deltaUV1 = uv3 - uv1;
|
||||
deltaUV2 = uv4 - uv1;
|
||||
|
||||
f = 1.0f / (deltaUV1.x * deltaUV2.y - deltaUV2.x * deltaUV1.y);
|
||||
|
||||
tangent2.x = f * (deltaUV2.y * edge1.x - deltaUV1.y * edge2.x);
|
||||
tangent2.y = f * (deltaUV2.y * edge1.y - deltaUV1.y * edge2.y);
|
||||
tangent2.z = f * (deltaUV2.y * edge1.z - deltaUV1.y * edge2.z);
|
||||
tangent2 = glm::normalize(tangent2);
|
||||
|
||||
|
||||
bitangent2.x = f * (-deltaUV2.x * edge1.x + deltaUV1.x * edge2.x);
|
||||
bitangent2.y = f * (-deltaUV2.x * edge1.y + deltaUV1.x * edge2.y);
|
||||
bitangent2.z = f * (-deltaUV2.x * edge1.z + deltaUV1.x * edge2.z);
|
||||
bitangent2 = glm::normalize(bitangent2);
|
||||
|
||||
|
||||
GLfloat quadVertices[] = {
|
||||
// Positions // normal // TexCoords // Tangent // Bitangent
|
||||
pos1.x, pos1.y, pos1.z, nm.x, nm.y, nm.z, uv1.x, uv1.y, tangent1.x, tangent1.y, tangent1.z, bitangent1.x, bitangent1.y, bitangent1.z,
|
||||
pos2.x, pos2.y, pos2.z, nm.x, nm.y, nm.z, uv2.x, uv2.y, tangent1.x, tangent1.y, tangent1.z, bitangent1.x, bitangent1.y, bitangent1.z,
|
||||
pos3.x, pos3.y, pos3.z, nm.x, nm.y, nm.z, uv3.x, uv3.y, tangent1.x, tangent1.y, tangent1.z, bitangent1.x, bitangent1.y, bitangent1.z,
|
||||
|
||||
pos1.x, pos1.y, pos1.z, nm.x, nm.y, nm.z, uv1.x, uv1.y, tangent2.x, tangent2.y, tangent2.z, bitangent2.x, bitangent2.y, bitangent2.z,
|
||||
pos3.x, pos3.y, pos3.z, nm.x, nm.y, nm.z, uv3.x, uv3.y, tangent2.x, tangent2.y, tangent2.z, bitangent2.x, bitangent2.y, bitangent2.z,
|
||||
pos4.x, pos4.y, pos4.z, nm.x, nm.y, nm.z, uv4.x, uv4.y, tangent2.x, tangent2.y, tangent2.z, bitangent2.x, bitangent2.y, bitangent2.z
|
||||
};
|
||||
// Setup plane VAO
|
||||
glGenVertexArrays(1, &quadVAO);
|
||||
glGenBuffers(1, &quadVBO);
|
||||
glBindVertexArray(quadVAO);
|
||||
glBindBuffer(GL_ARRAY_BUFFER, quadVBO);
|
||||
glBufferData(GL_ARRAY_BUFFER, sizeof(quadVertices), &quadVertices, GL_STATIC_DRAW);
|
||||
glEnableVertexAttribArray(0);
|
||||
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 14 * sizeof(GLfloat), (GLvoid*)0);
|
||||
glEnableVertexAttribArray(1);
|
||||
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 14 * sizeof(GLfloat), (GLvoid*)(3 * sizeof(GLfloat)));
|
||||
glEnableVertexAttribArray(2);
|
||||
glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 14 * sizeof(GLfloat), (GLvoid*)(6 * sizeof(GLfloat)));
|
||||
glEnableVertexAttribArray(3);
|
||||
glVertexAttribPointer(3, 3, GL_FLOAT, GL_FALSE, 14 * sizeof(GLfloat), (GLvoid*)(8 * sizeof(GLfloat)));
|
||||
glEnableVertexAttribArray(4);
|
||||
glVertexAttribPointer(4, 3, GL_FLOAT, GL_FALSE, 14 * sizeof(GLfloat), (GLvoid*)(11 * sizeof(GLfloat)));
|
||||
}
|
||||
glBindVertexArray(quadVAO);
|
||||
glDrawArrays(GL_TRIANGLES, 0, 6);
|
||||
glBindVertexArray(0);
|
||||
}
|
||||
|
||||
// This function loads a texture from file. Note: texture loading functions like these are usually
|
||||
// managed by a 'Resource Manager' that manages all resources (like textures, models, audio).
|
||||
// For learning purposes we'll just define it as a utility function.
|
||||
GLuint loadTexture(GLchar const * path)
|
||||
{
|
||||
//Generate texture ID and load texture data
|
||||
GLuint textureID;
|
||||
glGenTextures(1, &textureID);
|
||||
int width, height;
|
||||
unsigned char* image = SOIL_load_image(path, &width, &height, 0, SOIL_LOAD_RGB);
|
||||
// Assign texture to ID
|
||||
glBindTexture(GL_TEXTURE_2D, textureID);
|
||||
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, image);
|
||||
glGenerateMipmap(GL_TEXTURE_2D);
|
||||
|
||||
// Parameters
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
|
||||
glBindTexture(GL_TEXTURE_2D, 0);
|
||||
SOIL_free_image_data(image);
|
||||
return textureID;
|
||||
}
|
||||
|
||||
#pragma region "User input"
|
||||
|
||||
bool keys[1024];
|
||||
bool keysPressed[1024];
|
||||
// Moves/alters the camera positions based on user input
|
||||
void Do_Movement()
|
||||
{
|
||||
// Camera controls
|
||||
if (keys[GLFW_KEY_W])
|
||||
camera.ProcessKeyboard(FORWARD, deltaTime);
|
||||
if (keys[GLFW_KEY_S])
|
||||
camera.ProcessKeyboard(BACKWARD, deltaTime);
|
||||
if (keys[GLFW_KEY_A])
|
||||
camera.ProcessKeyboard(LEFT, deltaTime);
|
||||
if (keys[GLFW_KEY_D])
|
||||
camera.ProcessKeyboard(RIGHT, deltaTime);
|
||||
|
||||
// Change parallax height scale
|
||||
if (keys[GLFW_KEY_Q])
|
||||
height_scale -= 0.05 * deltaTime;
|
||||
else if (keys[GLFW_KEY_E])
|
||||
height_scale += 0.05 * deltaTime;
|
||||
|
||||
// Enable/disable parallax mapping
|
||||
if (keys[GLFW_KEY_SPACE] && !keysPressed[GLFW_KEY_SPACE])
|
||||
{
|
||||
parallax_mapping = !parallax_mapping;
|
||||
keysPressed[GLFW_KEY_SPACE] = true;
|
||||
}
|
||||
}
|
||||
|
||||
// Is called whenever a key is pressed/released via GLFW
|
||||
void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode)
|
||||
{
|
||||
if (key == GLFW_KEY_ESCAPE && action == GLFW_PRESS)
|
||||
glfwSetWindowShouldClose(window, GL_TRUE);
|
||||
|
||||
if (key >= 0 && key <= 1024)
|
||||
{
|
||||
if (action == GLFW_PRESS)
|
||||
keys[key] = true;
|
||||
else if (action == GLFW_RELEASE)
|
||||
{
|
||||
keys[key] = false;
|
||||
keysPressed[key] = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
GLfloat lastX = 400, lastY = 300;
|
||||
bool firstMouse = true;
|
||||
// Moves/alters the camera positions based on user input
|
||||
void mouse_callback(GLFWwindow* window, double xpos, double ypos)
|
||||
{
|
||||
if (firstMouse)
|
||||
{
|
||||
lastX = xpos;
|
||||
lastY = ypos;
|
||||
firstMouse = false;
|
||||
}
|
||||
|
||||
GLfloat xoffset = xpos - lastX;
|
||||
GLfloat yoffset = lastY - ypos;
|
||||
|
||||
lastX = xpos;
|
||||
lastY = ypos;
|
||||
|
||||
camera.ProcessMouseMovement(xoffset, yoffset);
|
||||
}
|
||||
|
||||
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
|
||||
{
|
||||
camera.ProcessMouseScroll(yoffset);
|
||||
}
|
||||
|
||||
#pragma endregion
|
||||
@@ -0,0 +1,11 @@
|
||||
#version 330 core
|
||||
layout (location = 0) in vec3 position;
|
||||
layout (location = 1) in vec2 texCoords;
|
||||
|
||||
out vec2 TexCoords;
|
||||
|
||||
void main()
|
||||
{
|
||||
gl_Position = vec4(position, 1.0f);
|
||||
TexCoords = texCoords;
|
||||
}
|
||||
@@ -0,0 +1,66 @@
|
||||
#version 330 core
|
||||
out vec4 FragColor;
|
||||
in vec2 TexCoords;
|
||||
|
||||
uniform sampler2D gPosition;
|
||||
uniform sampler2D gNormal;
|
||||
uniform sampler2D gAlbedoSpec;
|
||||
|
||||
struct Light {
|
||||
vec3 Position;
|
||||
vec3 Color;
|
||||
|
||||
float Linear;
|
||||
float Quadratic;
|
||||
float Radius;
|
||||
};
|
||||
const int NR_LIGHTS = 32;
|
||||
uniform Light lights[NR_LIGHTS];
|
||||
uniform vec3 viewPos;
|
||||
|
||||
uniform int draw_mode;
|
||||
|
||||
void main()
|
||||
{
|
||||
// Retrieve data from gbuffer
|
||||
vec3 FragPos = texture(gPosition, TexCoords).rgb;
|
||||
vec3 Normal = texture(gNormal, TexCoords).rgb;
|
||||
vec3 Diffuse = texture(gAlbedoSpec, TexCoords).rgb;
|
||||
float Specular = texture(gAlbedoSpec, TexCoords).a;
|
||||
|
||||
// Then calculate lighting as usual
|
||||
vec3 lighting = Diffuse * 0.1; // hard-coded ambient component
|
||||
vec3 viewDir = normalize(viewPos - FragPos);
|
||||
for(int i = 0; i < NR_LIGHTS; ++i)
|
||||
{
|
||||
// Calculate distance between light source and current fragment
|
||||
float distance = length(lights[i].Position - FragPos);
|
||||
if(distance < lights[i].Radius)
|
||||
{
|
||||
// Diffuse
|
||||
vec3 lightDir = normalize(lights[i].Position - FragPos);
|
||||
vec3 diffuse = max(dot(Normal, lightDir), 0.0) * Diffuse * lights[i].Color;
|
||||
// Specular
|
||||
vec3 halfwayDir = normalize(lightDir + viewDir);
|
||||
float spec = pow(max(dot(Normal, halfwayDir), 0.0), 16.0);
|
||||
vec3 specular = lights[i].Color * spec * Specular;
|
||||
// Attenuation
|
||||
float attenuation = 1.0 / (1.0 + lights[i].Linear * distance + lights[i].Quadratic * distance * distance);
|
||||
diffuse *= attenuation;
|
||||
specular *= attenuation;
|
||||
lighting += diffuse + specular;
|
||||
}
|
||||
}
|
||||
|
||||
// Based on which of the 1-5 keys we pressed, show final result or intermediate g-buffer textures
|
||||
if(draw_mode == 1)
|
||||
FragColor = vec4(lighting, 1.0);
|
||||
else if(draw_mode == 2)
|
||||
FragColor = vec4(FragPos, 1.0);
|
||||
else if(draw_mode == 3)
|
||||
FragColor = vec4(Normal, 1.0);
|
||||
else if(draw_mode == 4)
|
||||
FragColor = vec4(Diffuse, 1.0);
|
||||
else if(draw_mode == 5)
|
||||
FragColor = vec4(vec3(Specular), 1.0);
|
||||
}
|
||||
@@ -0,0 +1,11 @@
|
||||
#version 330 core
|
||||
layout (location = 0) in vec3 position;
|
||||
layout (location = 1) in vec2 texCoords;
|
||||
|
||||
out vec2 TexCoords;
|
||||
|
||||
void main()
|
||||
{
|
||||
gl_Position = vec4(position, 1.0f);
|
||||
TexCoords = texCoords;
|
||||
}
|
||||
@@ -0,0 +1,441 @@
|
||||
// GLEW
|
||||
#define GLEW_STATIC
|
||||
#include <GL/glew.h>
|
||||
|
||||
// GLFW
|
||||
#include <GLFW/glfw3.h>
|
||||
|
||||
// GL includes
|
||||
#include <learnopengl/shader.h>
|
||||
#include <learnopengl/camera.h>
|
||||
#include <learnopengl/model.h>
|
||||
|
||||
// GLM Mathemtics
|
||||
#include <glm/glm.hpp>
|
||||
#include <glm/gtc/matrix_transform.hpp>
|
||||
#include <glm/gtc/type_ptr.hpp>
|
||||
|
||||
// Other Libs
|
||||
#include <SOIL.h>
|
||||
#include <learnopengl/filesystem.h>
|
||||
|
||||
// Properties
|
||||
const GLuint SCR_WIDTH = 800, SCR_HEIGHT = 600;
|
||||
|
||||
// Function prototypes
|
||||
void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode);
|
||||
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);
|
||||
void mouse_callback(GLFWwindow* window, double xpos, double ypos);
|
||||
void Do_Movement();
|
||||
GLuint loadTexture(GLchar const * path);
|
||||
void RenderCube();
|
||||
void RenderQuad();
|
||||
|
||||
// Camera
|
||||
Camera camera(glm::vec3(0.0f, 0.0f, 5.0f));
|
||||
|
||||
// Delta
|
||||
GLfloat deltaTime = 0.0f;
|
||||
GLfloat lastFrame = 0.0f;
|
||||
|
||||
// Options
|
||||
GLuint draw_mode = 1;
|
||||
GLboolean wireframe = false;
|
||||
|
||||
// The MAIN function, from here we start our application and run our Game loop
|
||||
int main()
|
||||
{
|
||||
// Init GLFW
|
||||
glfwInit();
|
||||
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
|
||||
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
|
||||
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
|
||||
glfwWindowHint(GLFW_RESIZABLE, GL_FALSE);
|
||||
|
||||
GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", nullptr, nullptr); // Windowed
|
||||
glfwMakeContextCurrent(window);
|
||||
|
||||
// Set the required callback functions
|
||||
glfwSetKeyCallback(window, key_callback);
|
||||
glfwSetCursorPosCallback(window, mouse_callback);
|
||||
glfwSetScrollCallback(window, scroll_callback);
|
||||
|
||||
// Options
|
||||
glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);
|
||||
|
||||
// Initialize GLEW to setup the OpenGL Function pointers
|
||||
glewExperimental = GL_TRUE;
|
||||
glewInit();
|
||||
|
||||
// Define the viewport dimensions
|
||||
glViewport(0, 0, SCR_WIDTH, SCR_HEIGHT);
|
||||
|
||||
// Setup some OpenGL options
|
||||
glEnable(GL_DEPTH_TEST);
|
||||
|
||||
// Setup and compile our shaders
|
||||
Shader shaderGeometryPass("g_buffer.vs", "g_buffer.frag");
|
||||
Shader shaderLightingPass("deferred_shading.vs", "deferred_shading.frag");
|
||||
Shader shaderLightBox("deferred_light_box.vs", "deferred_light_box.frag");
|
||||
|
||||
// Set samplers
|
||||
shaderLightingPass.Use();
|
||||
glUniform1i(glGetUniformLocation(shaderLightingPass.Program, "gPosition"), 0);
|
||||
glUniform1i(glGetUniformLocation(shaderLightingPass.Program, "gNormal"), 1);
|
||||
glUniform1i(glGetUniformLocation(shaderLightingPass.Program, "gAlbedoSpec"), 2);
|
||||
|
||||
// Models
|
||||
Model cyborg(FileSystem::getPath("resources/objects/nanosuit/nanosuit.obj").c_str());
|
||||
std::vector<glm::vec3> objectPositions;
|
||||
objectPositions.push_back(glm::vec3(-3.0, -3.0, -3.0));
|
||||
objectPositions.push_back(glm::vec3(0.0, -3.0, -3.0));
|
||||
objectPositions.push_back(glm::vec3(3.0, -3.0, -3.0));
|
||||
objectPositions.push_back(glm::vec3(-3.0, -3.0, 0.0));
|
||||
objectPositions.push_back(glm::vec3(0.0, -3.0, 0.0));
|
||||
objectPositions.push_back(glm::vec3(3.0, -3.0, 0.0));
|
||||
objectPositions.push_back(glm::vec3(-3.0, -3.0, 3.0));
|
||||
objectPositions.push_back(glm::vec3(0.0, -3.0, 3.0));
|
||||
objectPositions.push_back(glm::vec3(3.0, -3.0, 3.0));
|
||||
// - Colors
|
||||
const GLuint NR_LIGHTS = 32;
|
||||
std::vector<glm::vec3> lightPositions;
|
||||
std::vector<glm::vec3> lightColors;
|
||||
srand(13);
|
||||
for (GLuint i = 0; i < NR_LIGHTS; i++)
|
||||
{
|
||||
// Calculate slightly random offsets
|
||||
GLfloat xPos = ((rand() % 100) / 100.0) * 6.0 - 3.0;
|
||||
GLfloat yPos = ((rand() % 100) / 100.0) * 6.0 - 4.0;
|
||||
GLfloat zPos = ((rand() % 100) / 100.0) * 6.0 - 3.0;
|
||||
lightPositions.push_back(glm::vec3(xPos, yPos, zPos));
|
||||
// Also calculate random color
|
||||
GLfloat rColor = ((rand() % 100) / 200.0f) + 0.5; // Between 0.5 and 1.0
|
||||
GLfloat gColor = ((rand() % 100) / 200.0f) + 0.5; // Between 0.5 and 1.0
|
||||
GLfloat bColor = ((rand() % 100) / 200.0f) + 0.5; // Between 0.5 and 1.0
|
||||
lightColors.push_back(glm::vec3(rColor, gColor, bColor));
|
||||
}
|
||||
|
||||
// Set up G-Buffer
|
||||
// 3 textures:
|
||||
// 1. Positions (RGB)
|
||||
// 2. Color (RGB) + Specular (A)
|
||||
// 3. Normals (RGB)
|
||||
GLuint gBuffer;
|
||||
glGenFramebuffers(1, &gBuffer);
|
||||
glBindFramebuffer(GL_FRAMEBUFFER, gBuffer);
|
||||
GLuint gPosition, gNormal, gAlbedoSpec;
|
||||
// - Position color buffer
|
||||
glGenTextures(1, &gPosition);
|
||||
glBindTexture(GL_TEXTURE_2D, gPosition);
|
||||
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB16F, SCR_WIDTH, SCR_HEIGHT, 0, GL_RGB, GL_FLOAT, NULL);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
|
||||
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, gPosition, 0);
|
||||
// - Normal color buffer
|
||||
glGenTextures(1, &gNormal);
|
||||
glBindTexture(GL_TEXTURE_2D, gNormal);
|
||||
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB16F, SCR_WIDTH, SCR_HEIGHT, 0, GL_RGB, GL_FLOAT, NULL);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
|
||||
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT1, GL_TEXTURE_2D, gNormal, 0);
|
||||
// - Color + Specular color buffer
|
||||
glGenTextures(1, &gAlbedoSpec);
|
||||
glBindTexture(GL_TEXTURE_2D, gAlbedoSpec);
|
||||
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, SCR_WIDTH, SCR_HEIGHT, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
|
||||
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT2, GL_TEXTURE_2D, gAlbedoSpec, 0);
|
||||
// - Tell OpenGL which color attachments we'll use (of this framebuffer) for rendering
|
||||
GLuint attachments[3] = { GL_COLOR_ATTACHMENT0, GL_COLOR_ATTACHMENT1, GL_COLOR_ATTACHMENT2 };
|
||||
glDrawBuffers(3, attachments);
|
||||
// - Create and attach depth buffer (renderbuffer)
|
||||
GLuint rboDepth;
|
||||
glGenRenderbuffers(1, &rboDepth);
|
||||
glBindRenderbuffer(GL_RENDERBUFFER, rboDepth);
|
||||
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT, SCR_WIDTH, SCR_HEIGHT);
|
||||
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, rboDepth);
|
||||
// - Finally check if framebuffer is complete
|
||||
if (glCheckFramebufferStatus(GL_FRAMEBUFFER) != GL_FRAMEBUFFER_COMPLETE)
|
||||
std::cout << "Framebuffer not complete!" << std::endl;
|
||||
glBindFramebuffer(GL_FRAMEBUFFER, 0);
|
||||
|
||||
glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
|
||||
|
||||
// Game loop
|
||||
while (!glfwWindowShouldClose(window))
|
||||
{
|
||||
// Set frame time
|
||||
GLfloat currentFrame = glfwGetTime();
|
||||
deltaTime = currentFrame - lastFrame;
|
||||
lastFrame = currentFrame;
|
||||
|
||||
// Check and call events
|
||||
glfwPollEvents();
|
||||
Do_Movement();
|
||||
|
||||
glPolygonMode(GL_FRONT_AND_BACK, wireframe ? GL_LINE : GL_FILL);
|
||||
|
||||
// 1. Geometry Pass: render scene's geometry/color data into gbuffer
|
||||
glBindFramebuffer(GL_FRAMEBUFFER, gBuffer);
|
||||
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
|
||||
glm::mat4 projection = glm::perspective(camera.Zoom, (GLfloat)SCR_WIDTH / (GLfloat)SCR_HEIGHT, 0.1f, 100.0f);
|
||||
glm::mat4 view = camera.GetViewMatrix();
|
||||
glm::mat4 model;
|
||||
shaderGeometryPass.Use();
|
||||
glUniformMatrix4fv(glGetUniformLocation(shaderGeometryPass.Program, "projection"), 1, GL_FALSE, glm::value_ptr(projection));
|
||||
glUniformMatrix4fv(glGetUniformLocation(shaderGeometryPass.Program, "view"), 1, GL_FALSE, glm::value_ptr(view));
|
||||
for (GLuint i = 0; i < objectPositions.size(); i++)
|
||||
{
|
||||
model = glm::mat4();
|
||||
model = glm::translate(model, objectPositions[i]);
|
||||
model = glm::scale(model, glm::vec3(0.25f));
|
||||
glUniformMatrix4fv(glGetUniformLocation(shaderGeometryPass.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
|
||||
cyborg.Draw(shaderGeometryPass);
|
||||
}
|
||||
glBindFramebuffer(GL_FRAMEBUFFER, 0);
|
||||
|
||||
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
|
||||
|
||||
|
||||
// 2. Lighting Pass: calculate lighting by iterating over a screen filled quad pixel-by-pixel using the gbuffer's content.
|
||||
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
|
||||
shaderLightingPass.Use();
|
||||
glActiveTexture(GL_TEXTURE0);
|
||||
glBindTexture(GL_TEXTURE_2D, gPosition);
|
||||
glActiveTexture(GL_TEXTURE1);
|
||||
glBindTexture(GL_TEXTURE_2D, gNormal);
|
||||
glActiveTexture(GL_TEXTURE2);
|
||||
glBindTexture(GL_TEXTURE_2D, gAlbedoSpec);
|
||||
// Also send light relevant uniforms
|
||||
for (GLuint i = 0; i < lightPositions.size(); i++)
|
||||
{
|
||||
glUniform3fv(glGetUniformLocation(shaderLightingPass.Program, ("lights[" + std::to_string(i) + "].Position").c_str()), 1, &lightPositions[i][0]);
|
||||
glUniform3fv(glGetUniformLocation(shaderLightingPass.Program, ("lights[" + std::to_string(i) + "].Color").c_str()), 1, &lightColors[i][0]);
|
||||
// Update attenuation parameters and calculate radius
|
||||
const GLfloat constant = 1.0; // Note that we don't send this to the shader, we assume it is always 1.0 (in our case)
|
||||
const GLfloat linear = 0.7;
|
||||
const GLfloat quadratic = 1.8;
|
||||
glUniform1f(glGetUniformLocation(shaderLightingPass.Program, ("lights[" + std::to_string(i) + "].Linear").c_str()), linear);
|
||||
glUniform1f(glGetUniformLocation(shaderLightingPass.Program, ("lights[" + std::to_string(i) + "].Quadratic").c_str()), quadratic);
|
||||
// Then calculate radius of light volume/sphere
|
||||
const GLfloat lightThreshold = 5.0; // 5 / 256
|
||||
const GLfloat maxBrightness = std::fmaxf(std::fmaxf(lightColors[i].r, lightColors[i].g), lightColors[i].b);
|
||||
GLfloat radius = (-linear + static_cast<float>(std::sqrt(linear * linear - 4 * quadratic * (constant - (256.0 / lightThreshold) * maxBrightness)))) / (2 * quadratic);
|
||||
glUniform1f(glGetUniformLocation(shaderLightingPass.Program, ("lights[" + std::to_string(i) + "].Radius").c_str()), radius);
|
||||
}
|
||||
glUniform3fv(glGetUniformLocation(shaderLightingPass.Program, "viewPos"), 1, &camera.Position[0]);
|
||||
glUniform1i(glGetUniformLocation(shaderLightingPass.Program, "draw_mode"), draw_mode);
|
||||
RenderQuad();
|
||||
|
||||
// 2.5. Copy content of geometry's depth buffer to default framebuffer's depth buffer
|
||||
glBindFramebuffer(GL_READ_FRAMEBUFFER, gBuffer);
|
||||
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, 0); // Write to default framebuffer
|
||||
// blit to default framebuffer. Note that this may or may not work as the internal formats of both the FBO and default framebuffer have to match.
|
||||
// the internal formats are implementation defined. This works on all of my systems, but if it doesn't on yours you'll likely have to write to the
|
||||
// depth buffer in another stage (or somehow see to match the default framebuffer's internal format with the FBO's internal format).
|
||||
glBlitFramebuffer(0, 0, SCR_WIDTH, SCR_HEIGHT, 0, 0, SCR_WIDTH, SCR_HEIGHT, GL_DEPTH_BUFFER_BIT, GL_NEAREST);
|
||||
glBindFramebuffer(GL_FRAMEBUFFER, 0);
|
||||
|
||||
// 3. Render lights on top of scene, by blitting
|
||||
shaderLightBox.Use();
|
||||
glUniformMatrix4fv(glGetUniformLocation(shaderLightBox.Program, "projection"), 1, GL_FALSE, glm::value_ptr(projection));
|
||||
glUniformMatrix4fv(glGetUniformLocation(shaderLightBox.Program, "view"), 1, GL_FALSE, glm::value_ptr(view));
|
||||
for (GLuint i = 0; i < lightPositions.size(); i++)
|
||||
{
|
||||
model = glm::mat4();
|
||||
model = glm::translate(model, lightPositions[i]);
|
||||
model = glm::scale(model, glm::vec3(0.25f));
|
||||
glUniformMatrix4fv(glGetUniformLocation(shaderLightBox.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
|
||||
glUniform3fv(glGetUniformLocation(shaderLightBox.Program, "lightColor"), 1, &lightColors[i][0]);
|
||||
RenderCube();
|
||||
}
|
||||
|
||||
// Swap the buffers
|
||||
glfwSwapBuffers(window);
|
||||
}
|
||||
|
||||
glfwTerminate();
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
// RenderQuad() Renders a 1x1 quad in NDC, best used for framebuffer color targets
|
||||
// and post-processing effects.
|
||||
GLuint quadVAO = 0;
|
||||
GLuint quadVBO;
|
||||
void RenderQuad()
|
||||
{
|
||||
if (quadVAO == 0)
|
||||
{
|
||||
GLfloat quadVertices[] = {
|
||||
// Positions // Texture Coords
|
||||
-1.0f, 1.0f, 0.0f, 0.0f, 1.0f,
|
||||
-1.0f, -1.0f, 0.0f, 0.0f, 0.0f,
|
||||
1.0f, 1.0f, 0.0f, 1.0f, 1.0f,
|
||||
1.0f, -1.0f, 0.0f, 1.0f, 0.0f,
|
||||
};
|
||||
// Setup plane VAO
|
||||
glGenVertexArrays(1, &quadVAO);
|
||||
glGenBuffers(1, &quadVBO);
|
||||
glBindVertexArray(quadVAO);
|
||||
glBindBuffer(GL_ARRAY_BUFFER, quadVBO);
|
||||
glBufferData(GL_ARRAY_BUFFER, sizeof(quadVertices), &quadVertices, GL_STATIC_DRAW);
|
||||
glEnableVertexAttribArray(0);
|
||||
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 5 * sizeof(GLfloat), (GLvoid*)0);
|
||||
glEnableVertexAttribArray(1);
|
||||
glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 5 * sizeof(GLfloat), (GLvoid*)(3 * sizeof(GLfloat)));
|
||||
}
|
||||
glBindVertexArray(quadVAO);
|
||||
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
|
||||
glBindVertexArray(0);
|
||||
}
|
||||
|
||||
// RenderCube() Renders a 1x1 3D cube in NDC.
|
||||
GLuint cubeVAO = 0;
|
||||
GLuint cubeVBO = 0;
|
||||
void RenderCube()
|
||||
{
|
||||
// Initialize (if necessary)
|
||||
if (cubeVAO == 0)
|
||||
{
|
||||
GLfloat vertices[] = {
|
||||
// Back face
|
||||
-0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, // Bottom-left
|
||||
0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f, // top-right
|
||||
0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 1.0f, 0.0f, // bottom-right
|
||||
0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f, // top-right
|
||||
-0.5f, -0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, // bottom-left
|
||||
-0.5f, 0.5f, -0.5f, 0.0f, 0.0f, -1.0f, 0.0f, 1.0f,// top-left
|
||||
// Front face
|
||||
-0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, // bottom-left
|
||||
0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, // bottom-right
|
||||
0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, // top-right
|
||||
0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, // top-right
|
||||
-0.5f, 0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, // top-left
|
||||
-0.5f, -0.5f, 0.5f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, // bottom-left
|
||||
// Left face
|
||||
-0.5f, 0.5f, 0.5f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-right
|
||||
-0.5f, 0.5f, -0.5f, -1.0f, 0.0f, 0.0f, 1.0f, 1.0f, // top-left
|
||||
-0.5f, -0.5f, -0.5f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-left
|
||||
-0.5f, -0.5f, -0.5f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-left
|
||||
-0.5f, -0.5f, 0.5f, -1.0f, 0.0f, 0.0f, 0.0f, 0.0f, // bottom-right
|
||||
-0.5f, 0.5f, 0.5f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-right
|
||||
// Right face
|
||||
0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-left
|
||||
0.5f, -0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-right
|
||||
0.5f, 0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, // top-right
|
||||
0.5f, -0.5f, -0.5f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-right
|
||||
0.5f, 0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-left
|
||||
0.5f, -0.5f, 0.5f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, // bottom-left
|
||||
// Bottom face
|
||||
-0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f, // top-right
|
||||
0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, 1.0f, 1.0f, // top-left
|
||||
0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f,// bottom-left
|
||||
0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f, // bottom-left
|
||||
-0.5f, -0.5f, 0.5f, 0.0f, -1.0f, 0.0f, 0.0f, 0.0f, // bottom-right
|
||||
-0.5f, -0.5f, -0.5f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f, // top-right
|
||||
// Top face
|
||||
-0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f,// top-left
|
||||
0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, // bottom-right
|
||||
0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, // top-right
|
||||
0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, // bottom-right
|
||||
-0.5f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f,// top-left
|
||||
-0.5f, 0.5f, 0.5f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f // bottom-left
|
||||
};
|
||||
glGenVertexArrays(1, &cubeVAO);
|
||||
glGenBuffers(1, &cubeVBO);
|
||||
// Fill buffer
|
||||
glBindBuffer(GL_ARRAY_BUFFER, cubeVBO);
|
||||
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
|
||||
// Link vertex attributes
|
||||
glBindVertexArray(cubeVAO);
|
||||
glEnableVertexAttribArray(0);
|
||||
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)0);
|
||||
glEnableVertexAttribArray(1);
|
||||
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)(3 * sizeof(GLfloat)));
|
||||
glEnableVertexAttribArray(2);
|
||||
glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)(6 * sizeof(GLfloat)));
|
||||
glBindBuffer(GL_ARRAY_BUFFER, 0);
|
||||
glBindVertexArray(0);
|
||||
}
|
||||
// Render Cube
|
||||
glBindVertexArray(cubeVAO);
|
||||
glDrawArrays(GL_TRIANGLES, 0, 36);
|
||||
glBindVertexArray(0);
|
||||
}
|
||||
|
||||
bool keys[1024];
|
||||
bool keysPressed[1024];
|
||||
// Moves/alters the camera positions based on user input
|
||||
void Do_Movement()
|
||||
{
|
||||
// Camera controls
|
||||
if (keys[GLFW_KEY_W])
|
||||
camera.ProcessKeyboard(FORWARD, deltaTime);
|
||||
if (keys[GLFW_KEY_S])
|
||||
camera.ProcessKeyboard(BACKWARD, deltaTime);
|
||||
if (keys[GLFW_KEY_A])
|
||||
camera.ProcessKeyboard(LEFT, deltaTime);
|
||||
if (keys[GLFW_KEY_D])
|
||||
camera.ProcessKeyboard(RIGHT, deltaTime);
|
||||
|
||||
if (keys[GLFW_KEY_1])
|
||||
draw_mode = 1;
|
||||
if (keys[GLFW_KEY_2])
|
||||
draw_mode = 2;
|
||||
if (keys[GLFW_KEY_3])
|
||||
draw_mode = 3;
|
||||
if (keys[GLFW_KEY_4])
|
||||
draw_mode = 4;
|
||||
if (keys[GLFW_KEY_5])
|
||||
draw_mode = 5;
|
||||
|
||||
if (keys[GLFW_KEY_Z] && !keysPressed[GLFW_KEY_Z])
|
||||
{
|
||||
wireframe = !wireframe;
|
||||
keysPressed[GLFW_KEY_Z] = true;
|
||||
}
|
||||
}
|
||||
|
||||
GLfloat lastX = 400, lastY = 300;
|
||||
bool firstMouse = true;
|
||||
// Is called whenever a key is pressed/released via GLFW
|
||||
void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode)
|
||||
{
|
||||
if (key == GLFW_KEY_ESCAPE && action == GLFW_PRESS)
|
||||
glfwSetWindowShouldClose(window, GL_TRUE);
|
||||
|
||||
if (key >= 0 && key <= 1024)
|
||||
{
|
||||
if (action == GLFW_PRESS)
|
||||
keys[key] = true;
|
||||
else if (action == GLFW_RELEASE)
|
||||
{
|
||||
keys[key] = false;
|
||||
keysPressed[key] = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void mouse_callback(GLFWwindow* window, double xpos, double ypos)
|
||||
{
|
||||
if (firstMouse)
|
||||
{
|
||||
lastX = xpos;
|
||||
lastY = ypos;
|
||||
firstMouse = false;
|
||||
}
|
||||
|
||||
GLfloat xoffset = xpos - lastX;
|
||||
GLfloat yoffset = lastY - ypos;
|
||||
|
||||
lastX = xpos;
|
||||
lastY = ypos;
|
||||
|
||||
camera.ProcessMouseMovement(xoffset, yoffset);
|
||||
}
|
||||
|
||||
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
|
||||
{
|
||||
camera.ProcessMouseScroll(yoffset);
|
||||
}
|
||||
11
src/5.advanced_lighting/9.ssao/9.ssao.vs
Normal file
11
src/5.advanced_lighting/9.ssao/9.ssao.vs
Normal file
@@ -0,0 +1,11 @@
|
||||
#version 330 core
|
||||
layout (location = 0) in vec3 position;
|
||||
layout (location = 1) in vec2 texCoords;
|
||||
|
||||
out vec2 TexCoords;
|
||||
|
||||
void main()
|
||||
{
|
||||
gl_Position = vec4(position, 1.0f);
|
||||
TexCoords = texCoords;
|
||||
}
|
||||
123
src/6.pbr/1.1.lighting/1.1.pbr.fs
Normal file
123
src/6.pbr/1.1.lighting/1.1.pbr.fs
Normal file
@@ -0,0 +1,123 @@
|
||||
#version 330 core
|
||||
out vec4 FragColor;
|
||||
in vec2 TexCoords;
|
||||
in vec3 WorldPos;
|
||||
in vec3 Normal;
|
||||
in mat3 TBN;
|
||||
|
||||
// material parameters
|
||||
uniform vec3 albedo;
|
||||
uniform float metallic;
|
||||
uniform float roughness;
|
||||
uniform float ao;
|
||||
|
||||
// lights
|
||||
uniform vec3 lightPositions[4];
|
||||
uniform vec3 lightColors[4];
|
||||
|
||||
uniform vec3 camPos;
|
||||
uniform float exposure;
|
||||
|
||||
const float PI = 3.14159265359;
|
||||
// ----------------------------------------------------------------------------
|
||||
float DistributionGGX(vec3 N, vec3 H, float roughness)
|
||||
{
|
||||
float a = roughness*roughness;
|
||||
float a2 = a*a;
|
||||
float NdotH = max(dot(N, H), 0.0);
|
||||
float NdotH2 = NdotH*NdotH;
|
||||
|
||||
float nom = a2;
|
||||
float denom = (NdotH2 * (a2 - 1.0) + 1.0);
|
||||
denom = PI * denom * denom;
|
||||
|
||||
return nom / denom;
|
||||
}
|
||||
// ----------------------------------------------------------------------------
|
||||
float GeometrySchlickGGX(float NdotV, float roughness)
|
||||
{
|
||||
float r = (roughness + 1.0);
|
||||
float k = (r*r) / 8.0;
|
||||
|
||||
float nom = NdotV;
|
||||
float denom = NdotV * (1.0 - k) + k;
|
||||
|
||||
return nom / denom;
|
||||
}
|
||||
// ----------------------------------------------------------------------------
|
||||
float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness)
|
||||
{
|
||||
float NdotV = max(dot(N, V), 0.0);
|
||||
float NdotL = max(dot(N, L), 0.0);
|
||||
float ggx2 = GeometrySchlickGGX(NdotV, roughness);
|
||||
float ggx1 = GeometrySchlickGGX(NdotL, roughness);
|
||||
|
||||
return ggx1 * ggx2;
|
||||
}
|
||||
// ----------------------------------------------------------------------------
|
||||
vec3 fresnelSchlick(float cosTheta, vec3 F0)
|
||||
{
|
||||
return F0 + (1.0 - F0) * pow(1.0 - cosTheta, 5.0);
|
||||
}
|
||||
// ----------------------------------------------------------------------------
|
||||
void main()
|
||||
{
|
||||
vec3 N = normalize(Normal);
|
||||
vec3 V = normalize(camPos - WorldPos);
|
||||
|
||||
// calculate reflectance at normal incidence; if dia-electric (like plastic) use F0
|
||||
// of 0.04 and if it's a metal, use their albedo color as F0 (metallic workflow)
|
||||
vec3 F0 = vec3(0.04);
|
||||
F0 = mix(F0, albedo, metallic);
|
||||
|
||||
// reflectance equation
|
||||
vec3 Lo = vec3(0.0);
|
||||
for(int i = 0; i < 4; ++i)
|
||||
{
|
||||
// calculate per-light radiance
|
||||
vec3 L = normalize(lightPositions[i] - WorldPos);
|
||||
vec3 H = normalize(V + L);
|
||||
float distance = length(lightPositions[i] - WorldPos);
|
||||
float attenuation = 1.0 / (distance * distance);
|
||||
vec3 radiance = lightColors[i] * attenuation;
|
||||
|
||||
// Cook-Torrance BRDF
|
||||
float NDF = DistributionGGX(N, H, roughness);
|
||||
float G = GeometrySmith(N, V, L, roughness);
|
||||
vec3 F = fresnelSchlick(max(dot(H, V), 0.0), F0);
|
||||
|
||||
vec3 nominator = NDF * G * F;
|
||||
float denominator = 4 * max(dot(N, V), 0.0) * max(dot(N, L), 0.0) + 0.001; // 0.001 to prevent divide by zero.
|
||||
vec3 specular = nominator / denominator;
|
||||
|
||||
// kS is equal to Fresnel
|
||||
vec3 kS = F;
|
||||
// for energy conservation, the diffuse and specular light can't
|
||||
// be above 1.0 (unless the surface emits light); to preserve this
|
||||
// relationship the diffuse component (kD) should equal 1.0 - kS.
|
||||
vec3 kD = vec3(1.0) - kS;
|
||||
// multiply kD by the inverse metalness such that only non-metals
|
||||
// have diffuse lighting, or a linear blend if partly metal (pure metals
|
||||
// have no diffuse light).
|
||||
kD *= 1.0 - metallic;
|
||||
|
||||
// scale light by NdotL
|
||||
float NdotL = max(dot(N, L), 0.0);
|
||||
|
||||
// add to outgoing radiance Lo
|
||||
Lo += (kD * albedo / PI + specular) * radiance * NdotL; // note that we already multiplied the BRDF by the Fresnel (kS) so we won't multiply by kS again
|
||||
}
|
||||
|
||||
// ambient lighting (note that the next IBL tutorial will replace
|
||||
// this ambient lighting with environment lighting).
|
||||
vec3 ambient = vec3(0.03) * albedo * ao;
|
||||
|
||||
vec3 color = ambient + Lo;
|
||||
|
||||
// HDR tonemapping
|
||||
color = color / (color + vec3(1.0));
|
||||
// gamma correct
|
||||
color = pow(color, vec3(1.0/2.2));
|
||||
|
||||
FragColor = vec4(color, 1.0);
|
||||
}
|
||||
150
src/6.pbr/1.2.lighting_textured/1.2.pbr.fs
Normal file
150
src/6.pbr/1.2.lighting_textured/1.2.pbr.fs
Normal file
@@ -0,0 +1,150 @@
|
||||
#version 330 core
|
||||
out vec4 FragColor;
|
||||
in vec2 TexCoords;
|
||||
in vec3 WorldPos;
|
||||
in vec3 Normal;
|
||||
in mat3 TBN;
|
||||
|
||||
// material parameters
|
||||
uniform sampler2D albedoMap;
|
||||
uniform sampler2D normalMap;
|
||||
uniform sampler2D metallicMap;
|
||||
uniform sampler2D roughnessMap;
|
||||
uniform sampler2D aoMap;
|
||||
|
||||
// lights
|
||||
uniform vec3 lightPositions[4];
|
||||
uniform vec3 lightColors[4];
|
||||
|
||||
uniform vec3 camPos;
|
||||
uniform float exposure;
|
||||
|
||||
const float PI = 3.14159265359;
|
||||
// ----------------------------------------------------------------------------
|
||||
// Easy trick to get tangent-normals to world-space to keep PBR code simplified.
|
||||
// Don't worry if you don't get what's going on; you generally want to do normal
|
||||
// mapping the usual way for performance anways; I do plan make a note of this
|
||||
// technique somewhere later in the normal mapping tutorial.
|
||||
vec3 getNormalFromMap()
|
||||
{
|
||||
vec3 tangentNormal = texture(normalMap, TexCoords).xyz * 2.0 - 1.0;
|
||||
|
||||
vec3 Q1 = dFdx(WorldPos);
|
||||
vec3 Q2 = dFdy(WorldPos);
|
||||
vec2 st1 = dFdx(TexCoords);
|
||||
vec2 st2 = dFdy(TexCoords);
|
||||
|
||||
vec3 N = normalize(Normal);
|
||||
vec3 T = normalize(Q1*st2.t - Q2*st1.t);
|
||||
vec3 B = -normalize(cross(N, T));
|
||||
mat3 TBN = mat3(T, B, N);
|
||||
|
||||
return normalize(TBN * tangentNormal);
|
||||
}
|
||||
// ----------------------------------------------------------------------------
|
||||
float DistributionGGX(vec3 N, vec3 H, float roughness)
|
||||
{
|
||||
float a = roughness*roughness;
|
||||
float a2 = a*a;
|
||||
float NdotH = max(dot(N, H), 0.0);
|
||||
float NdotH2 = NdotH*NdotH;
|
||||
|
||||
float nom = a2;
|
||||
float denom = (NdotH2 * (a2 - 1.0) + 1.0);
|
||||
denom = PI * denom * denom;
|
||||
|
||||
return nom / denom;
|
||||
}
|
||||
// ----------------------------------------------------------------------------
|
||||
float GeometrySchlickGGX(float NdotV, float roughness)
|
||||
{
|
||||
float r = (roughness + 1.0);
|
||||
float k = (r*r) / 8.0;
|
||||
|
||||
float nom = NdotV;
|
||||
float denom = NdotV * (1.0 - k) + k;
|
||||
|
||||
return nom / denom;
|
||||
}
|
||||
// ----------------------------------------------------------------------------
|
||||
float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness)
|
||||
{
|
||||
float NdotV = max(dot(N, V), 0.0);
|
||||
float NdotL = max(dot(N, L), 0.0);
|
||||
float ggx2 = GeometrySchlickGGX(NdotV, roughness);
|
||||
float ggx1 = GeometrySchlickGGX(NdotL, roughness);
|
||||
|
||||
return ggx1 * ggx2;
|
||||
}
|
||||
// ----------------------------------------------------------------------------
|
||||
vec3 fresnelSchlick(float cosTheta, vec3 F0)
|
||||
{
|
||||
return F0 + (1.0 - F0) * pow(1.0 - cosTheta, 5.0);
|
||||
}
|
||||
// ----------------------------------------------------------------------------
|
||||
void main()
|
||||
{
|
||||
vec3 albedo = pow(texture(albedoMap, TexCoords).rgb, vec3(2.2));
|
||||
float metallic = texture(metallicMap, TexCoords).r;
|
||||
float roughness = texture(roughnessMap, TexCoords).r;
|
||||
float ao = texture(aoMap, TexCoords).r;
|
||||
|
||||
vec3 N = getNormalFromMap();
|
||||
vec3 V = normalize(camPos - WorldPos);
|
||||
|
||||
// calculate reflectance at normal incidence; if dia-electric (like plastic) use F0
|
||||
// of 0.04 and if it's a metal, use their albedo color as F0 (metallic workflow)
|
||||
vec3 F0 = vec3(0.04);
|
||||
F0 = mix(F0, albedo, metallic);
|
||||
|
||||
// reflectance equation
|
||||
vec3 Lo = vec3(0.0);
|
||||
for(int i = 0; i < 4; ++i)
|
||||
{
|
||||
// calculate per-light radiance
|
||||
vec3 L = normalize(lightPositions[i] - WorldPos);
|
||||
vec3 H = normalize(V + L);
|
||||
float distance = length(lightPositions[i] - WorldPos);
|
||||
float attenuation = 1.0 / (distance * distance);
|
||||
vec3 radiance = lightColors[i] * attenuation;
|
||||
|
||||
// Cook-Torrance BRDF
|
||||
float NDF = DistributionGGX(N, H, roughness);
|
||||
float G = GeometrySmith(N, V, L, roughness);
|
||||
vec3 F = fresnelSchlick(max(dot(H, V), 0.0), F0);
|
||||
|
||||
vec3 nominator = NDF * G * F;
|
||||
float denominator = 4 * max(dot(N, V), 0.0) * max(dot(N, L), 0.0) + 0.001; // 0.001 to prevent divide by zero.
|
||||
vec3 specular = nominator / denominator;
|
||||
|
||||
// kS is equal to Fresnel
|
||||
vec3 kS = F;
|
||||
// for energy conservation, the diffuse and specular light can't
|
||||
// be above 1.0 (unless the surface emits light); to preserve this
|
||||
// relationship the diffuse component (kD) should equal 1.0 - kS.
|
||||
vec3 kD = vec3(1.0) - kS;
|
||||
// multiply kD by the inverse metalness such that only non-metals
|
||||
// have diffuse lighting, or a linear blend if partly metal (pure metals
|
||||
// have no diffuse light).
|
||||
kD *= 1.0 - metallic;
|
||||
|
||||
// scale light by NdotL
|
||||
float NdotL = max(dot(N, L), 0.0);
|
||||
|
||||
// add to outgoing radiance Lo
|
||||
Lo += (kD * albedo / PI + specular) * radiance * NdotL; // note that we already multiplied the BRDF by the Fresnel (kS) so we won't multiply by kS again
|
||||
}
|
||||
|
||||
// ambient lighting (note that the next IBL tutorial will replace
|
||||
// this ambient lighting with environment lighting).
|
||||
vec3 ambient = vec3(0.03) * albedo * ao;
|
||||
|
||||
vec3 color = ambient + Lo;
|
||||
|
||||
// HDR tonemapping
|
||||
color = color / (color + vec3(1.0));
|
||||
// gamma correct
|
||||
color = pow(color, vec3(1.0/2.2));
|
||||
|
||||
FragColor = vec4(color, 1.0);
|
||||
}
|
||||
@@ -93,7 +93,7 @@ void main()
|
||||
|
||||
vec3 nominator = NDF * G * F;
|
||||
float denominator = 4 * max(dot(N, V), 0.0) * max(dot(N, L), 0.0) + 0.001; // 0.001 to prevent divide by zero.
|
||||
vec3 brdf = nominator / denominator;
|
||||
vec3 specular = nominator / denominator;
|
||||
|
||||
// kS is equal to Fresnel
|
||||
vec3 kS = F;
|
||||
@@ -110,7 +110,7 @@ void main()
|
||||
float NdotL = max(dot(N, L), 0.0);
|
||||
|
||||
// add to outgoing radiance Lo
|
||||
Lo += (kD * albedo / PI + brdf) * radiance * NdotL; // note that we already multiplied the BRDF by the Fresnel (kS) so we won't multiply by kS again
|
||||
Lo += (kD * albedo / PI + specular) * radiance * NdotL; // note that we already multiplied the BRDF by the Fresnel (kS) so we won't multiply by kS again
|
||||
}
|
||||
|
||||
vec3 ambient = vec3(0.03) * albedo * ao;
|
||||
|
||||
@@ -91,7 +91,7 @@ void main()
|
||||
|
||||
vec3 nominator = NDF * G * F;
|
||||
float denominator = 4 * max(dot(N, V), 0.0) * max(dot(N, L), 0.0) + 0.001; // 0.001 to prevent divide by zero.
|
||||
vec3 brdf = nominator / denominator;
|
||||
vec3 specular = nominator / denominator;
|
||||
|
||||
// kS is equal to Fresnel
|
||||
vec3 kS = F;
|
||||
@@ -108,7 +108,7 @@ void main()
|
||||
float NdotL = max(dot(N, L), 0.0);
|
||||
|
||||
// add to outgoing radiance Lo
|
||||
Lo += (kD * albedo / PI + brdf) * radiance * NdotL; // note that we already multiplied the BRDF by the Fresnel (kS) so we won't multiply by kS again
|
||||
Lo += (kD * albedo / PI + specular) * radiance * NdotL; // note that we already multiplied the BRDF by the Fresnel (kS) so we won't multiply by kS again
|
||||
}
|
||||
|
||||
// ambient lighting (we now use IBL as the ambient term)
|
||||
|
||||
@@ -98,7 +98,7 @@ void main()
|
||||
|
||||
vec3 nominator = NDF * G * F;
|
||||
float denominator = 4 * max(dot(N, V), 0.0) * max(dot(N, L), 0.0) + 0.001; // 0.001 to prevent divide by zero.
|
||||
vec3 brdf = nominator / denominator;
|
||||
vec3 specular = nominator / denominator;
|
||||
|
||||
// kS is equal to Fresnel
|
||||
vec3 kS = F;
|
||||
@@ -115,7 +115,7 @@ void main()
|
||||
float NdotL = max(dot(N, L), 0.0);
|
||||
|
||||
// add to outgoing radiance Lo
|
||||
Lo += (kD * albedo / PI + brdf) * radiance * NdotL; // note that we already multiplied the BRDF by the Fresnel (kS) so we won't multiply by kS again
|
||||
Lo += (kD * albedo / PI + specular) * radiance * NdotL; // note that we already multiplied the BRDF by the Fresnel (kS) so we won't multiply by kS again
|
||||
}
|
||||
|
||||
// ambient lighting (we now use IBL as the ambient term)
|
||||
|
||||
Reference in New Issue
Block a user