PBR IBL Specular tutorial code.
@@ -117,7 +117,8 @@ set(6.pbr
|
||||
1.2.lighting_textured
|
||||
2.1.1.ibl_irradiance_conversion
|
||||
2.1.2.ibl_irradiance
|
||||
# 2.2.ibl_specular
|
||||
2.2.1.ibl_specular
|
||||
2.2.2.ibl_specular_textured
|
||||
)
|
||||
|
||||
set(7.in_practice
|
||||
|
||||
BIN
resources/textures/pbr/gold/albedo.png
Normal file
|
After Width: | Height: | Size: 19 KiB |
BIN
resources/textures/pbr/gold/ao.png
Normal file
|
After Width: | Height: | Size: 1.8 KiB |
BIN
resources/textures/pbr/gold/metallic.png
Normal file
|
After Width: | Height: | Size: 7.7 KiB |
BIN
resources/textures/pbr/gold/normal.png
Normal file
|
After Width: | Height: | Size: 26 KiB |
BIN
resources/textures/pbr/gold/roughness.png
Normal file
|
After Width: | Height: | Size: 1.8 MiB |
BIN
resources/textures/pbr/grass/albedo.png
Normal file
|
After Width: | Height: | Size: 9.7 MiB |
BIN
resources/textures/pbr/grass/ao.png
Normal file
|
After Width: | Height: | Size: 2.8 MiB |
BIN
resources/textures/pbr/grass/metallic.png
Normal file
|
After Width: | Height: | Size: 32 KiB |
BIN
resources/textures/pbr/grass/normal.png
Normal file
|
After Width: | Height: | Size: 10 MiB |
BIN
resources/textures/pbr/grass/roughness.png
Normal file
|
After Width: | Height: | Size: 2.2 MiB |
BIN
resources/textures/pbr/plastic/albedo.png
Normal file
|
After Width: | Height: | Size: 1.9 MiB |
BIN
resources/textures/pbr/plastic/ao.png
Normal file
|
After Width: | Height: | Size: 2.6 MiB |
BIN
resources/textures/pbr/plastic/metallic.png
Normal file
|
After Width: | Height: | Size: 23 KiB |
BIN
resources/textures/pbr/plastic/normal.png
Normal file
|
After Width: | Height: | Size: 4.4 MiB |
BIN
resources/textures/pbr/plastic/roughness.png
Normal file
|
After Width: | Height: | Size: 4.5 MiB |
BIN
resources/textures/pbr/wall/albedo.png
Normal file
|
After Width: | Height: | Size: 6.1 MiB |
BIN
resources/textures/pbr/wall/ao.png
Normal file
|
After Width: | Height: | Size: 427 KiB |
BIN
resources/textures/pbr/wall/metallic.png
Normal file
|
After Width: | Height: | Size: 4.1 KiB |
BIN
resources/textures/pbr/wall/normal.png
Normal file
|
After Width: | Height: | Size: 9.6 MiB |
BIN
resources/textures/pbr/wall/roughness.png
Normal file
|
After Width: | Height: | Size: 2.5 MiB |
18
src/6.pbr/2.2.1.ibl_specular/2.2.1.background.frag
Normal file
@@ -0,0 +1,18 @@
|
||||
#version 330 core
|
||||
out vec4 FragColor;
|
||||
in vec3 WorldPos;
|
||||
|
||||
uniform samplerCube environmentMap;
|
||||
uniform float lod;
|
||||
|
||||
void main()
|
||||
{
|
||||
// vec3 envColor = textureLod(environmentMap, WorldPos, 1.0).rgb;
|
||||
vec3 envColor = textureLod(environmentMap, WorldPos, lod).rgb;
|
||||
|
||||
// HDR tonemap and gamma correct
|
||||
envColor = envColor / (envColor + vec3(1.0));
|
||||
envColor = pow(envColor, vec3(1.0/2.2));
|
||||
|
||||
FragColor = vec4(envColor, 1.0);
|
||||
}
|
||||
17
src/6.pbr/2.2.1.ibl_specular/2.2.1.background.vs
Normal file
@@ -0,0 +1,17 @@
|
||||
#version 330 core
|
||||
layout (location = 0) in vec3 pos;
|
||||
|
||||
uniform mat4 projection;
|
||||
uniform mat4 view;
|
||||
|
||||
out vec3 WorldPos;
|
||||
|
||||
void main()
|
||||
{
|
||||
WorldPos = pos;
|
||||
|
||||
mat4 rotView = mat4(mat3(view));
|
||||
vec4 clipPos = projection * rotView * vec4(WorldPos, 1.0);
|
||||
|
||||
gl_Position = clipPos.xyww;
|
||||
}
|
||||
113
src/6.pbr/2.2.1.ibl_specular/2.2.1.brdf.frag
Normal file
@@ -0,0 +1,113 @@
|
||||
#version 330 core
|
||||
out vec2 FragColor;
|
||||
in vec2 TexCoords;
|
||||
|
||||
const float PI = 3.14159265359f;
|
||||
// ----------------------------------------------------------------------------
|
||||
// http://holger.dammertz.org/stuff/notes_HammersleyOnHemisphere.html
|
||||
// efficient VanDerCorpus calculation.
|
||||
float RadicalInverse_VdC(uint bits)
|
||||
{
|
||||
bits = (bits << 16u) | (bits >> 16u);
|
||||
bits = ((bits & 0x55555555u) << 1u) | ((bits & 0xAAAAAAAAu) >> 1u);
|
||||
bits = ((bits & 0x33333333u) << 2u) | ((bits & 0xCCCCCCCCu) >> 2u);
|
||||
bits = ((bits & 0x0F0F0F0Fu) << 4u) | ((bits & 0xF0F0F0F0u) >> 4u);
|
||||
bits = ((bits & 0x00FF00FFu) << 8u) | ((bits & 0xFF00FF00u) >> 8u);
|
||||
return float(bits) * 2.3283064365386963e-10; // / 0x100000000
|
||||
}
|
||||
// ----------------------------------------------------------------------------
|
||||
vec2 Hammersley(uint i, uint N)
|
||||
{
|
||||
return vec2(float(i)/float(N), RadicalInverse_VdC(i));
|
||||
}
|
||||
// ----------------------------------------------------------------------------
|
||||
vec3 ImportanceSampleGGX(vec2 Xi, vec3 N, float roughness)
|
||||
{
|
||||
float a = roughness*roughness;
|
||||
|
||||
float phi = 2.0 * PI * Xi.x;
|
||||
float cosTheta = sqrt((1.0 - Xi.y) / (1.0 + (a*a - 1.0) * Xi.y));
|
||||
float sinTheta = sqrt(1.0 - cosTheta*cosTheta);
|
||||
|
||||
// NOTE(Joey): from spherical coordinates to cartesian coordinates - halfway vector
|
||||
vec3 H;
|
||||
H.x = cos(phi) * sinTheta;
|
||||
H.y = sin(phi) * sinTheta;
|
||||
H.z = cosTheta;
|
||||
|
||||
// NOTE(Joey): from tangent-space H vector to world-space sample vector
|
||||
vec3 up = abs(N.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(1.0, 0.0, 0.0);
|
||||
vec3 tangent = normalize(cross(up, N));
|
||||
vec3 bitangent = cross(N, tangent);
|
||||
|
||||
vec3 sampleVec = tangent * H.x + bitangent * H.y + N * H.z;
|
||||
return normalize(sampleVec);
|
||||
}
|
||||
// ----------------------------------------------------------------------------
|
||||
float GeometrySchlickGGX(float NdotV, float roughness)
|
||||
{
|
||||
// note that we use a different k for IBL
|
||||
float a = roughness;
|
||||
float k = (a * a) / 2.0;
|
||||
|
||||
float nom = NdotV;
|
||||
float denom = NdotV * (1.0 - k) + k;
|
||||
|
||||
return nom / denom;
|
||||
}
|
||||
// ----------------------------------------------------------------------------
|
||||
float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness)
|
||||
{
|
||||
float NdotV = max(dot(N, V), 0.0);
|
||||
float NdotL = max(dot(N, L), 0.0);
|
||||
float ggx2 = GeometrySchlickGGX(NdotV, roughness);
|
||||
float ggx1 = GeometrySchlickGGX(NdotL, roughness);
|
||||
|
||||
return ggx1 * ggx2;
|
||||
}
|
||||
// ----------------------------------------------------------------------------
|
||||
vec2 IntegrateBRDF(float roughness, float NdotV)
|
||||
{
|
||||
vec3 V;
|
||||
V.x = sqrt(1.0 - NdotV*NdotV);
|
||||
V.y = 0.0;
|
||||
V.z = NdotV;
|
||||
|
||||
float A = 0.0;
|
||||
float B = 0.0;
|
||||
|
||||
vec3 N = vec3(0.0, 0.0, 1.0);
|
||||
|
||||
const uint SAMPLE_COUNT = 1024u;
|
||||
for(uint i = 0u; i < SAMPLE_COUNT; ++i)
|
||||
{
|
||||
// NOTE(Joey): generates a sample vector that's biased towards the
|
||||
// preferred alignment direction (importance sampling).
|
||||
vec2 Xi = Hammersley(i, SAMPLE_COUNT);
|
||||
vec3 H = ImportanceSampleGGX(Xi, N, roughness);
|
||||
vec3 L = normalize(2.0 * dot(V, H) * H - V);
|
||||
|
||||
float NdotL = max(L.z, 0.0);
|
||||
float NdotH = max(H.z, 0.0);
|
||||
float VdotH = max(dot(V, H), 0.0);
|
||||
|
||||
if(NdotL > 0.0)
|
||||
{
|
||||
float G = GeometrySmith(N, V, L, roughness);
|
||||
float G_Vis = (G * VdotH) / (NdotH * NdotV);
|
||||
float Fc = pow(1.0 - VdotH, 5.0);
|
||||
|
||||
A += (1.0 - Fc) * G_Vis;
|
||||
B += Fc * G_Vis;
|
||||
}
|
||||
}
|
||||
A /= float(SAMPLE_COUNT);
|
||||
B /= float(SAMPLE_COUNT);
|
||||
return vec2(A, B);
|
||||
}
|
||||
// ----------------------------------------------------------------------------
|
||||
void main()
|
||||
{
|
||||
vec2 integratedBRDF = IntegrateBRDF(TexCoords.y, TexCoords.x);
|
||||
FragColor = integratedBRDF;
|
||||
}
|
||||
11
src/6.pbr/2.2.1.ibl_specular/2.2.1.brdf.vs
Normal file
@@ -0,0 +1,11 @@
|
||||
#version 330 core
|
||||
layout (location = 0) in vec3 pos;
|
||||
layout (location = 1) in vec2 texCoords;
|
||||
|
||||
out vec2 TexCoords;
|
||||
|
||||
void main()
|
||||
{
|
||||
TexCoords = texCoords;
|
||||
gl_Position = vec4(pos, 1.0);
|
||||
}
|
||||
14
src/6.pbr/2.2.1.ibl_specular/2.2.1.cubemap.vs
Normal file
@@ -0,0 +1,14 @@
|
||||
#version 330 core
|
||||
layout (location = 0) in vec3 pos;
|
||||
|
||||
out vec3 WorldPos;
|
||||
|
||||
uniform mat4 projection;
|
||||
uniform mat4 view;
|
||||
|
||||
void main()
|
||||
{
|
||||
WorldPos = pos;
|
||||
|
||||
gl_Position = projection * view * vec4(WorldPos, 1.0);
|
||||
}
|
||||
@@ -0,0 +1,22 @@
|
||||
#version 330 core
|
||||
out vec4 FragColor;
|
||||
in vec3 WorldPos;
|
||||
|
||||
uniform sampler2D equirectangularMap;
|
||||
|
||||
const vec2 invAtan = vec2(0.1591, 0.3183);
|
||||
vec2 SampleSphericalMap(vec3 v)
|
||||
{
|
||||
vec2 uv = vec2(atan(v.z, v.x), asin(v.y));
|
||||
uv *= invAtan;
|
||||
uv += 0.5;
|
||||
return uv;
|
||||
}
|
||||
|
||||
void main()
|
||||
{
|
||||
vec2 uv = SampleSphericalMap(normalize(WorldPos));
|
||||
vec3 color = texture(equirectangularMap, uv).rgb;
|
||||
|
||||
FragColor = vec4(color, 1.0);
|
||||
}
|
||||
@@ -0,0 +1,43 @@
|
||||
#version 330 core
|
||||
out vec4 FragColor;
|
||||
in vec3 WorldPos;
|
||||
|
||||
uniform samplerCube environmentMap;
|
||||
|
||||
const float PI = 3.14159265359f;
|
||||
|
||||
void main()
|
||||
{
|
||||
// NOTE(Joey): the world vector acts as the normal of a tangent surface
|
||||
// from the origin, aligned to WorldPos. Given this normal, calculate all
|
||||
// incoming radiance of the environment. The result of this radiance
|
||||
// is the radiance of light coming from -Normal direction, which is what
|
||||
// we use in the PBR shader to sample irradiance.
|
||||
vec3 N = normalize(WorldPos);
|
||||
|
||||
vec3 irradiance = vec3(0.0);
|
||||
|
||||
// NOTE(Joey): tangent space calculation from origin point
|
||||
vec3 up = vec3(0.0, 1.0, 0.0);
|
||||
vec3 right = cross(up, N);
|
||||
up = cross(N, right);
|
||||
|
||||
float sampleDelta = 0.025f;
|
||||
float nrSamples = 0.0f;
|
||||
for(float phi = 0.0; phi < 2.0 * PI; phi += sampleDelta)
|
||||
{
|
||||
for(float theta = 0.0; theta < 0.5 * PI; theta += sampleDelta)
|
||||
{
|
||||
// spherical to cartesian (in tangent space)
|
||||
vec3 tangentSample = vec3(sin(theta) * cos(phi), sin(theta) * sin(phi), cos(theta));
|
||||
// tangent space to world
|
||||
vec3 sampleVec = tangentSample.x * right + tangentSample.y * up + tangentSample.z * N;
|
||||
|
||||
irradiance += texture(environmentMap, sampleVec).rgb * cos(theta) * sin(theta);
|
||||
nrSamples++;
|
||||
}
|
||||
}
|
||||
irradiance = PI * irradiance * (1.0 / float(nrSamples));
|
||||
|
||||
FragColor = vec4(irradiance, 1.0);
|
||||
}
|
||||
147
src/6.pbr/2.2.1.ibl_specular/2.2.1.pbr.frag
Normal file
@@ -0,0 +1,147 @@
|
||||
#version 330 core
|
||||
out vec4 FragColor;
|
||||
in vec2 TexCoords;
|
||||
in vec3 WorldPos;
|
||||
in vec3 Normal;
|
||||
in mat3 TBN;
|
||||
|
||||
// material parameters
|
||||
uniform vec3 albedo;
|
||||
uniform float metallic;
|
||||
uniform float roughness;
|
||||
uniform float ao;
|
||||
|
||||
// IBL
|
||||
uniform samplerCube irradianceMap;
|
||||
uniform samplerCube prefilterMap;
|
||||
uniform sampler2D brdfLUT;
|
||||
|
||||
// lights
|
||||
uniform vec3 lightPositions[4];
|
||||
uniform vec3 lightColors[4];
|
||||
|
||||
uniform vec3 camPos;
|
||||
|
||||
const float PI = 3.14159265359;
|
||||
// ----------------------------------------------------------------------------
|
||||
float DistributionGGX(vec3 N, vec3 H, float roughness)
|
||||
{
|
||||
float a = roughness*roughness;
|
||||
float a2 = a*a;
|
||||
float NdotH = max(dot(N, H), 0.0);
|
||||
float NdotH2 = NdotH*NdotH;
|
||||
|
||||
float nom = a2;
|
||||
float denom = (NdotH2 * (a2 - 1.0) + 1.0);
|
||||
denom = PI * denom * denom;
|
||||
|
||||
return nom / denom;
|
||||
}
|
||||
// ----------------------------------------------------------------------------
|
||||
float GeometrySchlickGGX(float NdotV, float roughness)
|
||||
{
|
||||
float r = (roughness + 1.0);
|
||||
float k = (r*r) / 8.0;
|
||||
|
||||
float nom = NdotV;
|
||||
float denom = NdotV * (1.0 - k) + k;
|
||||
|
||||
return nom / denom;
|
||||
}
|
||||
// ----------------------------------------------------------------------------
|
||||
float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness)
|
||||
{
|
||||
float NdotV = max(dot(N, V), 0.0);
|
||||
float NdotL = max(dot(N, L), 0.0);
|
||||
float ggx2 = GeometrySchlickGGX(NdotV, roughness);
|
||||
float ggx1 = GeometrySchlickGGX(NdotL, roughness);
|
||||
|
||||
return ggx1 * ggx2;
|
||||
}
|
||||
// ----------------------------------------------------------------------------
|
||||
vec3 fresnelSchlick(float cosTheta, vec3 F0)
|
||||
{
|
||||
return F0 + (1.0 - F0) * pow(1.0 - cosTheta, 5.0);
|
||||
}
|
||||
// ----------------------------------------------------------------------------
|
||||
vec3 fresnelSchlickRoughness(float cosTheta, vec3 F0, float roughness)
|
||||
{
|
||||
return F0 + (max(vec3(1.0 - roughness), F0) - F0) * pow(1.0 - cosTheta, 5.0);
|
||||
}
|
||||
// ----------------------------------------------------------------------------
|
||||
void main()
|
||||
{
|
||||
vec3 N = Normal;
|
||||
vec3 V = normalize(camPos - WorldPos);
|
||||
vec3 R = reflect(-V, N);
|
||||
|
||||
// calculate reflectance at normal incidence; if dia-electric (like plastic) use F0
|
||||
// of 0.04 and if it's a metal, use their albedo color as F0 (metallic workflow)
|
||||
vec3 F0 = vec3(0.04);
|
||||
F0 = mix(F0, albedo, metallic);
|
||||
|
||||
// reflectance equation
|
||||
vec3 Lo = vec3(0.0);
|
||||
for(int i = 0; i < 4; ++i)
|
||||
{
|
||||
// calculate per-light radiance
|
||||
vec3 L = normalize(lightPositions[i] - WorldPos);
|
||||
vec3 H = normalize(V + L);
|
||||
float distance = length(lightPositions[i] - WorldPos);
|
||||
float attenuation = 1.0 / (distance * distance);
|
||||
vec3 radiance = lightColors[i] * attenuation;
|
||||
|
||||
// Cook-Torrance BRDF
|
||||
float NDF = DistributionGGX(N, H, roughness);
|
||||
float G = GeometrySmith(N, V, L, roughness);
|
||||
vec3 F = fresnelSchlick(max(dot(H, V), 0.0), F0);
|
||||
|
||||
vec3 nominator = NDF * G * F;
|
||||
float denominator = 4 * max(dot(N, V), 0.0) * max(dot(N, L), 0.0) + 0.001; // 0.001 to prevent divide by zero.
|
||||
vec3 brdf = nominator / denominator;
|
||||
|
||||
// kS is equal to Fresnel
|
||||
vec3 kS = F;
|
||||
// for energy conservation, the diffuse and specular light can't
|
||||
// be above 1.0 (unless the surface emits light); to preserve this
|
||||
// relationship the diffuse component (kD) should equal 1.0 - kS.
|
||||
vec3 kD = vec3(1.0) - kS;
|
||||
// multiply kD by the inverse metalness such that only non-metals
|
||||
// have diffuse lighting, or a linear blend if partly metal (pure metals
|
||||
// have no diffuse light).
|
||||
kD *= 1.0 - metallic;
|
||||
|
||||
// scale light by NdotL
|
||||
float NdotL = max(dot(N, L), 0.0);
|
||||
|
||||
// add to outgoing radiance Lo
|
||||
Lo += (kD * albedo / PI + brdf) * radiance * NdotL; // note that we already multiplied the BRDF by the Fresnel (kS) so we won't multiply by kS again
|
||||
}
|
||||
|
||||
// ambient lighting (we now use IBL as the ambient term)
|
||||
vec3 F = fresnelSchlickRoughness(max(dot(N, V), 0.0), F0, roughness);
|
||||
|
||||
vec3 kS = F;
|
||||
vec3 kD = 1.0 - kS;
|
||||
kD *= 1.0 - metallic;
|
||||
|
||||
vec3 irradiance = texture(irradianceMap, N).rgb;
|
||||
vec3 diffuse = irradiance * albedo;
|
||||
|
||||
// sample both the pre-filter map and the BRDF lut and combine them together as per the Split-Sum approximation to get the IBL specular part.
|
||||
const float MAX_REFLECTION_LOD = 5.0;
|
||||
vec3 prefilteredColor = textureLod(prefilterMap, R, roughness * MAX_REFLECTION_LOD).rgb;
|
||||
vec2 brdf = texture(brdfLUT, vec2(max(dot(N, V), 0.0), roughness)).rg;
|
||||
vec3 specular = prefilteredColor * (F * brdf.x + brdf.y);
|
||||
|
||||
vec3 ambient = (kD * diffuse + specular) * ao;
|
||||
|
||||
vec3 color = ambient + Lo;
|
||||
|
||||
// HDR tonemapping
|
||||
color = color / (color + vec3(1.0));
|
||||
// gamma correct
|
||||
color = pow(color, vec3(1.0/2.2));
|
||||
|
||||
FragColor = vec4(color , 1.0);
|
||||
}
|
||||
21
src/6.pbr/2.2.1.ibl_specular/2.2.1.pbr.vs
Normal file
@@ -0,0 +1,21 @@
|
||||
#version 330 core
|
||||
layout (location = 0) in vec3 pos;
|
||||
layout (location = 1) in vec2 texCoords;
|
||||
layout (location = 2) in vec3 normal;
|
||||
|
||||
out vec2 TexCoords;
|
||||
out vec3 WorldPos;
|
||||
out vec3 Normal;
|
||||
|
||||
uniform mat4 projection;
|
||||
uniform mat4 view;
|
||||
uniform mat4 model;
|
||||
|
||||
void main()
|
||||
{
|
||||
TexCoords = texCoords;
|
||||
WorldPos = vec3(model * vec4(pos, 1.0f));
|
||||
Normal = mat3(model) * normal;
|
||||
|
||||
gl_Position = projection * view * vec4(WorldPos, 1.0);
|
||||
}
|
||||
106
src/6.pbr/2.2.1.ibl_specular/2.2.1.prefilter.frag
Normal file
@@ -0,0 +1,106 @@
|
||||
#version 330 core
|
||||
out vec4 FragColor;
|
||||
in vec3 WorldPos;
|
||||
|
||||
uniform samplerCube environmentMap;
|
||||
uniform float roughness;
|
||||
|
||||
const float PI = 3.14159265359f;
|
||||
// ----------------------------------------------------------------------------
|
||||
float DistributionGGX(vec3 N, vec3 H, float roughness)
|
||||
{
|
||||
float a = roughness*roughness;
|
||||
float a2 = a*a;
|
||||
float NdotH = max(dot(N, H), 0.0);
|
||||
float NdotH2 = NdotH*NdotH;
|
||||
|
||||
float nom = a2;
|
||||
float denom = (NdotH2 * (a2 - 1.0) + 1.0);
|
||||
denom = PI * denom * denom;
|
||||
|
||||
return nom / denom;
|
||||
}
|
||||
// ----------------------------------------------------------------------------
|
||||
// http://holger.dammertz.org/stuff/notes_HammersleyOnHemisphere.html
|
||||
// efficient VanDerCorpus calculation.
|
||||
float RadicalInverse_VdC(uint bits)
|
||||
{
|
||||
bits = (bits << 16u) | (bits >> 16u);
|
||||
bits = ((bits & 0x55555555u) << 1u) | ((bits & 0xAAAAAAAAu) >> 1u);
|
||||
bits = ((bits & 0x33333333u) << 2u) | ((bits & 0xCCCCCCCCu) >> 2u);
|
||||
bits = ((bits & 0x0F0F0F0Fu) << 4u) | ((bits & 0xF0F0F0F0u) >> 4u);
|
||||
bits = ((bits & 0x00FF00FFu) << 8u) | ((bits & 0xFF00FF00u) >> 8u);
|
||||
return float(bits) * 2.3283064365386963e-10; // / 0x100000000
|
||||
}
|
||||
// ----------------------------------------------------------------------------
|
||||
vec2 Hammersley(uint i, uint N)
|
||||
{
|
||||
return vec2(float(i)/float(N), RadicalInverse_VdC(i));
|
||||
}
|
||||
// ----------------------------------------------------------------------------
|
||||
vec3 ImportanceSampleGGX(vec2 Xi, vec3 N, float roughness)
|
||||
{
|
||||
float a = roughness*roughness;
|
||||
|
||||
float phi = 2.0 * PI * Xi.x;
|
||||
float cosTheta = sqrt((1.0 - Xi.y) / (1.0 + (a*a - 1.0) * Xi.y));
|
||||
float sinTheta = sqrt(1.0 - cosTheta*cosTheta);
|
||||
|
||||
// from spherical coordinates to cartesian coordinates - halfway vector
|
||||
vec3 H;
|
||||
H.x = cos(phi) * sinTheta;
|
||||
H.y = sin(phi) * sinTheta;
|
||||
H.z = cosTheta;
|
||||
|
||||
// from tangent-space H vector to world-space sample vector
|
||||
vec3 up = abs(N.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(1.0, 0.0, 0.0);
|
||||
vec3 tangent = normalize(cross(up, N));
|
||||
vec3 bitangent = cross(N, tangent);
|
||||
|
||||
vec3 sampleVec = tangent * H.x + bitangent * H.y + N * H.z;
|
||||
return normalize(sampleVec);
|
||||
}
|
||||
// ----------------------------------------------------------------------------
|
||||
void main()
|
||||
{
|
||||
vec3 N = normalize(WorldPos);
|
||||
|
||||
// make the simplyfying assumption that V equals R equals the normal
|
||||
vec3 R = N;
|
||||
vec3 V = R;
|
||||
|
||||
const uint SAMPLE_COUNT = 1024u;
|
||||
vec3 prefilteredColor = vec3(0.0);
|
||||
float totalWeight = 0.0;
|
||||
|
||||
for(uint i = 0u; i < SAMPLE_COUNT; ++i)
|
||||
{
|
||||
// generates a sample vector that's biased towards the preferred alignment direction (importance sampling).
|
||||
vec2 Xi = Hammersley(i, SAMPLE_COUNT);
|
||||
vec3 H = ImportanceSampleGGX(Xi, N, roughness);
|
||||
vec3 L = normalize(2.0 * dot(V, H) * H - V);
|
||||
|
||||
float NdotL = max(dot(N, L), 0.0);
|
||||
if(NdotL > 0.0)
|
||||
{
|
||||
// sample from the environment's mip level based on roughness/pdf
|
||||
float D = DistributionGGX(N, H, roughness);
|
||||
float NdotH = max(dot(N, H), 0.0);
|
||||
float HdotV = max(dot(H, V), 0.0);
|
||||
float pdf = D * NdotH / (4.0 * HdotV) + 0.0001;
|
||||
|
||||
float resolution = 512.0; // resolution of source cubemap (per face)
|
||||
float saTexel = 4.0 * PI / (6.0 * resolution * resolution);
|
||||
float saSample = 1.0 / (float(SAMPLE_COUNT) * pdf + 0.0001);
|
||||
|
||||
float mipLevel = roughness == 0.0 ? 0.0 : 0.5 * log2(saSample / saTexel);
|
||||
|
||||
prefilteredColor += textureLod(environmentMap, L, mipLevel).rgb * NdotL;
|
||||
totalWeight += NdotL;
|
||||
}
|
||||
}
|
||||
|
||||
prefilteredColor = prefilteredColor / totalWeight;
|
||||
|
||||
FragColor = vec4(prefilteredColor, 1.0);
|
||||
}
|
||||
727
src/6.pbr/2.2.1.ibl_specular/ibl_specular.cpp
Normal file
@@ -0,0 +1,727 @@
|
||||
// Std. Includes
|
||||
#include <string>
|
||||
|
||||
// GLEW
|
||||
#define GLEW_STATIC
|
||||
#include <GL/glew.h>
|
||||
|
||||
// GLFW
|
||||
#include <GLFW/glfw3.h>
|
||||
|
||||
// GL includes
|
||||
#include <learnopengl/shader.h>
|
||||
#include <learnopengl/camera.h>
|
||||
|
||||
// GLM Mathemtics
|
||||
#include <glm/glm.hpp>
|
||||
#include <glm/gtc/matrix_transform.hpp>
|
||||
#include <glm/gtc/type_ptr.hpp>
|
||||
|
||||
// Other Libs
|
||||
#include <learnopengl/filesystem.h>
|
||||
|
||||
#include "stb_image.h"
|
||||
|
||||
// Properties
|
||||
const GLuint SCR_WIDTH = 1280, SCR_HEIGHT = 720;
|
||||
|
||||
// Function prototypes
|
||||
void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode);
|
||||
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);
|
||||
void mouse_callback(GLFWwindow* window, double xpos, double ypos);
|
||||
void Do_Movement();
|
||||
GLuint loadTexture(GLchar const * path);
|
||||
void renderSphere();
|
||||
void renderCube();
|
||||
void RenderQuad();
|
||||
|
||||
// camera
|
||||
Camera camera(glm::vec3(0.0f, 0.0f, 3.0f));
|
||||
|
||||
// timing
|
||||
GLfloat deltaTime = 0.0f;
|
||||
GLfloat lastFrame = 0.0f;
|
||||
|
||||
// The MAIN function, from here we start the application and run the Game loop
|
||||
int main()
|
||||
{
|
||||
// GLFW Init
|
||||
// ---------
|
||||
glfwInit();
|
||||
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
|
||||
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
|
||||
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
|
||||
glfwWindowHint(GLFW_SAMPLES, 4);
|
||||
glfwWindowHint(GLFW_RESIZABLE, GL_FALSE);
|
||||
|
||||
GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", nullptr, nullptr); // Windowed
|
||||
glfwMakeContextCurrent(window);
|
||||
|
||||
// GLFW config
|
||||
// -----------
|
||||
glfwSetKeyCallback(window, key_callback);
|
||||
glfwSetCursorPosCallback(window, mouse_callback);
|
||||
glfwSetScrollCallback(window, scroll_callback);
|
||||
|
||||
glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);
|
||||
|
||||
// Initialize GLEW to setup the OpenGL Function pointers
|
||||
// -----------------------------------------------------
|
||||
glewExperimental = GL_TRUE;
|
||||
glewInit();
|
||||
glGetError();
|
||||
|
||||
// Setup OpenGL state
|
||||
// ------------------
|
||||
glEnable(GL_DEPTH_TEST);
|
||||
// set depth function to less than AND equal for skybox depth trick.
|
||||
glDepthFunc(GL_LEQUAL);
|
||||
// enable seamless cubemap sampling for lower mip levels in the pre-filter map.
|
||||
glEnable(GL_TEXTURE_CUBE_MAP_SEAMLESS);
|
||||
|
||||
// load and initialize shaders
|
||||
// ---------------------------
|
||||
Shader pbrShader("2.2.1.pbr.vs", "2.2.1.pbr.frag");
|
||||
Shader equirectangularToCubemapShader("2.2.1.cubemap.vs", "2.2.1.equirectangular_to_cubemap.frag");
|
||||
Shader irradianceShader("2.2.1.cubemap.vs", "2.2.1.irradiance_convolution.frag");
|
||||
Shader prefilterShader("2.2.1.cubemap.vs", "2.2.1.prefilter.frag");
|
||||
Shader brdfShader("2.2.1.brdf.vs", "2.2.1.brdf.frag");
|
||||
Shader backgroundShader("2.2.1.background.vs", "2.2.1.background.frag");
|
||||
|
||||
pbrShader.Use();
|
||||
glUniform1i(glGetUniformLocation(pbrShader.Program, "irradianceMap"), 0);
|
||||
glUniform1i(glGetUniformLocation(pbrShader.Program, "prefilterMap"), 1);
|
||||
glUniform1i(glGetUniformLocation(pbrShader.Program, "brdfLUT"), 2);
|
||||
glUniform3f(glGetUniformLocation(pbrShader.Program, "albedo"), 0.5f, 0.0f, 0.0f);
|
||||
glUniform1f(glGetUniformLocation(pbrShader.Program, "ao"), 1.0f);
|
||||
|
||||
backgroundShader.Use();
|
||||
glUniform1i(glGetUniformLocation(backgroundShader.Program, "environmentMap"), 0);
|
||||
|
||||
// lights
|
||||
// ------
|
||||
glm::vec3 lightPositions[] = {
|
||||
glm::vec3(-10.0f, 10.0f, 10.0f),
|
||||
glm::vec3(10.0f, 10.0f, 10.0f),
|
||||
glm::vec3(-10.0f, -10.0f, 10.0f),
|
||||
glm::vec3(10.0f, -10.0f, 10.0f),
|
||||
};
|
||||
glm::vec3 lightColors[] = {
|
||||
glm::vec3(300.0f, 300.0f, 300.0f),
|
||||
glm::vec3(300.0f, 300.0f, 300.0f),
|
||||
glm::vec3(300.0f, 300.0f, 300.0f),
|
||||
glm::vec3(300.0f, 300.0f, 300.0f)
|
||||
};
|
||||
int nrRows = 7;
|
||||
int nrColumns = 7;
|
||||
float spacing = 2.5;
|
||||
|
||||
// pbr: setup framebuffer
|
||||
// ----------------------
|
||||
unsigned int captureFBO;
|
||||
unsigned int captureRBO;
|
||||
glGenFramebuffers(1, &captureFBO);
|
||||
glGenRenderbuffers(1, &captureRBO);
|
||||
|
||||
glBindFramebuffer(GL_FRAMEBUFFER, captureFBO);
|
||||
glBindRenderbuffer(GL_RENDERBUFFER, captureRBO);
|
||||
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, 512, 512);
|
||||
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, captureRBO);
|
||||
|
||||
// pbr: load the HDR environment map
|
||||
// ---------------------------------
|
||||
stbi_set_flip_vertically_on_load(true);
|
||||
int width, height, nrComponents;
|
||||
float *data = stbi_loadf(FileSystem::getPath("resources/textures/hdr/newport_loft.hdr").c_str(), &width, &height, &nrComponents, 0);
|
||||
unsigned int hdrTexture;
|
||||
if (data)
|
||||
{
|
||||
glGenTextures(1, &hdrTexture);
|
||||
glBindTexture(GL_TEXTURE_2D, hdrTexture);
|
||||
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB16F, width, height, 0, GL_RGB, GL_FLOAT, data); // note how we specify the texture's data value to be float
|
||||
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
|
||||
|
||||
stbi_image_free(data);
|
||||
}
|
||||
else
|
||||
{
|
||||
std::cout << "Failed to load HDR image." << std::endl;
|
||||
}
|
||||
|
||||
// pbr: setup cubemap to render to and attach to framebuffer
|
||||
// ---------------------------------------------------------
|
||||
unsigned int envCubemap;
|
||||
glGenTextures(1, &envCubemap);
|
||||
glBindTexture(GL_TEXTURE_CUBE_MAP, envCubemap);
|
||||
for (unsigned int i = 0; i < 6; ++i)
|
||||
{
|
||||
glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, GL_RGB16F, 512, 512, 0, GL_RGB, GL_FLOAT, nullptr);
|
||||
}
|
||||
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
|
||||
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
|
||||
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
|
||||
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); // enable pre-filter mipmap sampling (combatting visible dots artifact)
|
||||
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
|
||||
|
||||
// pbr: set up projection and view matrices for capturing data onto the 6 cubemap face directions
|
||||
// ----------------------------------------------------------------------------------------------
|
||||
glm::mat4 captureProjection = glm::perspective(glm::radians(90.0f), 1.0f, 0.1f, 10.0f);
|
||||
glm::mat4 captureViews[] =
|
||||
{
|
||||
glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(1.0f, 0.0f, 0.0f), glm::vec3(0.0f, -1.0f, 0.0f)),
|
||||
glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(-1.0f, 0.0f, 0.0f), glm::vec3(0.0f, -1.0f, 0.0f)),
|
||||
glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f, 1.0f, 0.0f), glm::vec3(0.0f, 0.0f, 1.0f)),
|
||||
glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f, -1.0f, 0.0f), glm::vec3(0.0f, 0.0f, -1.0f)),
|
||||
glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f, 0.0f, 1.0f), glm::vec3(0.0f, -1.0f, 0.0f)),
|
||||
glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f, 0.0f, -1.0f), glm::vec3(0.0f, -1.0f, 0.0f))
|
||||
};
|
||||
|
||||
// pbr: convert HDR equirectangular environment map to cubemap equivalent
|
||||
// ----------------------------------------------------------------------
|
||||
equirectangularToCubemapShader.Use();
|
||||
glUniform1i(glGetUniformLocation(equirectangularToCubemapShader.Program, "equirectangularMap"), 0);
|
||||
glActiveTexture(GL_TEXTURE0);
|
||||
glBindTexture(GL_TEXTURE_2D, hdrTexture);
|
||||
glUniformMatrix4fv(glGetUniformLocation(equirectangularToCubemapShader.Program, "projection"), 1, GL_FALSE, glm::value_ptr(captureProjection));
|
||||
|
||||
glViewport(0, 0, 512, 512); // don't forget to configure the viewport to the capture dimensions.
|
||||
glBindFramebuffer(GL_FRAMEBUFFER, captureFBO);
|
||||
for (unsigned int i = 0; i < 6; ++i)
|
||||
{
|
||||
glUniformMatrix4fv(glGetUniformLocation(equirectangularToCubemapShader.Program, "view"), 1, GL_FALSE, glm::value_ptr(captureViews[i]));
|
||||
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, envCubemap, 0);
|
||||
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
|
||||
|
||||
renderCube();
|
||||
}
|
||||
glBindFramebuffer(GL_FRAMEBUFFER, 0);
|
||||
|
||||
// then let OpenGL generate mipmaps from first mip face (combatting visible dots artifact)
|
||||
glBindTexture(GL_TEXTURE_CUBE_MAP, envCubemap);
|
||||
glGenerateMipmap(GL_TEXTURE_CUBE_MAP);
|
||||
|
||||
// pbr: create an irradiance cubemap, and re-scale capture FBO to irradiance scale.
|
||||
// --------------------------------------------------------------------------------
|
||||
unsigned int irradianceMap;
|
||||
glGenTextures(1, &irradianceMap);
|
||||
glBindTexture(GL_TEXTURE_CUBE_MAP, irradianceMap);
|
||||
for (unsigned int i = 0; i < 6; ++i)
|
||||
{
|
||||
glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, GL_RGB32F, 32, 32, 0, GL_RGB, GL_FLOAT, nullptr);
|
||||
}
|
||||
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
|
||||
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
|
||||
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
|
||||
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
|
||||
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
|
||||
|
||||
glBindFramebuffer(GL_FRAMEBUFFER, captureFBO);
|
||||
glBindRenderbuffer(GL_RENDERBUFFER, captureRBO);
|
||||
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, 32, 32);
|
||||
|
||||
// pbr: solve diffuse integral by convolution to create an irradiance (cube)map.
|
||||
// -----------------------------------------------------------------------------
|
||||
irradianceShader.Use();
|
||||
glUniform1i(glGetUniformLocation(irradianceShader.Program, "environmentMap"), 0);
|
||||
glActiveTexture(GL_TEXTURE0);
|
||||
glBindTexture(GL_TEXTURE_CUBE_MAP, envCubemap);
|
||||
glUniformMatrix4fv(glGetUniformLocation(irradianceShader.Program, "projection"), 1, GL_FALSE, glm::value_ptr(captureProjection));
|
||||
|
||||
glViewport(0, 0, 32, 32); // don't forget to configure the viewport to the capture dimensions.
|
||||
glBindFramebuffer(GL_FRAMEBUFFER, captureFBO);
|
||||
for (unsigned int i = 0; i < 6; ++i)
|
||||
{
|
||||
glUniformMatrix4fv(glGetUniformLocation(irradianceShader.Program, "view"), 1, GL_FALSE, glm::value_ptr(captureViews[i]));
|
||||
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, irradianceMap, 0);
|
||||
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
|
||||
|
||||
renderCube();
|
||||
}
|
||||
glBindFramebuffer(GL_FRAMEBUFFER, 0);
|
||||
|
||||
// pbr: create a pre-filter cubemap, and re-scale capture FBO to pre-filter scale.
|
||||
// --------------------------------------------------------------------------------
|
||||
unsigned int prefilterMap;
|
||||
glGenTextures(1, &prefilterMap);
|
||||
glBindTexture(GL_TEXTURE_CUBE_MAP, prefilterMap);
|
||||
for (unsigned int i = 0; i < 6; ++i)
|
||||
{
|
||||
glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, GL_RGB16F, 128, 128, 0, GL_RGB, GL_FLOAT, nullptr);
|
||||
}
|
||||
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
|
||||
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
|
||||
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
|
||||
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); // be sure to set minifcation filter to mip_linear
|
||||
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
|
||||
// generate mipmaps for the cubemap so OpenGL automatically allocates the required memory.
|
||||
glGenerateMipmap(GL_TEXTURE_CUBE_MAP);
|
||||
|
||||
// pbr: run a quasi monte-carlo simulation on the environment lighting to create a prefilter (cube)map.
|
||||
// ----------------------------------------------------------------------------------------------------
|
||||
prefilterShader.Use();
|
||||
glUniform1i(glGetUniformLocation(prefilterShader.Program, "environmentMap"), 0);
|
||||
glActiveTexture(GL_TEXTURE0);
|
||||
glBindTexture(GL_TEXTURE_CUBE_MAP, envCubemap);
|
||||
glUniformMatrix4fv(glGetUniformLocation(prefilterShader.Program, "projection"), 1, GL_FALSE, glm::value_ptr(captureProjection));
|
||||
|
||||
glBindFramebuffer(GL_FRAMEBUFFER, captureFBO);
|
||||
unsigned int maxMipLevels = 5;
|
||||
for (unsigned int mip = 0; mip < maxMipLevels; ++mip)
|
||||
{
|
||||
// reisze framebuffer according to mip-level size.
|
||||
unsigned int mipWidth = 128 * std::pow(0.5, mip);
|
||||
unsigned int mipHeight = 128 * std::pow(0.5, mip);
|
||||
glBindRenderbuffer(GL_RENDERBUFFER, captureRBO);
|
||||
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, mipWidth, mipHeight);
|
||||
glViewport(0, 0, mipWidth, mipHeight);
|
||||
|
||||
float roughness = (float)mip / (float)(maxMipLevels - 1);
|
||||
glUniform1f(glGetUniformLocation(prefilterShader.Program, "roughness"), roughness);
|
||||
for (unsigned int i = 0; i < 6; ++i)
|
||||
{
|
||||
glUniformMatrix4fv(glGetUniformLocation(prefilterShader.Program, "view"), 1, GL_FALSE, glm::value_ptr(captureViews[i]));
|
||||
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, prefilterMap, mip);
|
||||
|
||||
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
|
||||
renderCube();
|
||||
}
|
||||
}
|
||||
glBindFramebuffer(GL_FRAMEBUFFER, 0);
|
||||
|
||||
// pbr: generate a 2D LUT from the BRDF equations used.
|
||||
// ----------------------------------------------------
|
||||
unsigned int brdfLUTTexture;
|
||||
glGenTextures(1, &brdfLUTTexture);
|
||||
|
||||
// pre-allocate enough memory for the LUT texture.
|
||||
glBindTexture(GL_TEXTURE_2D, brdfLUTTexture);
|
||||
glTexImage2D(GL_TEXTURE_2D, 0, GL_RG16F, 512, 512, 0, GL_RG, GL_FLOAT, 0);
|
||||
// be sure to set wrapping mode to GL_CLAMP_TO_EDGE
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
|
||||
|
||||
// then re-configure capture framebuffer object and render screen-space quad with BRDF shader.
|
||||
glBindFramebuffer(GL_FRAMEBUFFER, captureFBO);
|
||||
glBindRenderbuffer(GL_RENDERBUFFER, captureRBO);
|
||||
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, 512, 512);
|
||||
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, brdfLUTTexture, 0);
|
||||
|
||||
glViewport(0, 0, 512, 512);
|
||||
brdfShader.Use();
|
||||
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
|
||||
RenderQuad();
|
||||
|
||||
glBindFramebuffer(GL_FRAMEBUFFER, 0);
|
||||
|
||||
|
||||
// initialize static shader uniforms before rendering
|
||||
// --------------------------------------------------
|
||||
glm::mat4 projection = glm::perspective(camera.Zoom, (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f);
|
||||
pbrShader.Use();
|
||||
glUniformMatrix4fv(glGetUniformLocation(pbrShader.Program, "projection"), 1, GL_FALSE, glm::value_ptr(projection));
|
||||
backgroundShader.Use();
|
||||
glUniformMatrix4fv(glGetUniformLocation(backgroundShader.Program, "projection"), 1, GL_FALSE, glm::value_ptr(projection));
|
||||
|
||||
// then before rendering, configure the viewport to the actual screen dimensions
|
||||
glViewport(0, 0, SCR_WIDTH, SCR_HEIGHT);
|
||||
|
||||
// Game loop
|
||||
while (!glfwWindowShouldClose(window))
|
||||
{
|
||||
// set frame time
|
||||
GLfloat currentFrame = glfwGetTime();
|
||||
deltaTime = currentFrame - lastFrame;
|
||||
lastFrame = currentFrame;
|
||||
|
||||
// check and call events
|
||||
glfwPollEvents();
|
||||
Do_Movement();
|
||||
|
||||
// clear the colorbuffer
|
||||
glClearColor(0.1f, 0.1f, 0.1f, 1.0f);
|
||||
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
|
||||
|
||||
// render scene, supplying the convoluted irradiance map to the final shader.
|
||||
// ------------------------------------------------------------------------------------------
|
||||
pbrShader.Use();
|
||||
glm::mat4 view = camera.GetViewMatrix();
|
||||
glUniformMatrix4fv(glGetUniformLocation(pbrShader.Program, "view"), 1, GL_FALSE, glm::value_ptr(view));
|
||||
glUniform3fv(glGetUniformLocation(pbrShader.Program, "camPos"), 1, &camera.Position[0]);
|
||||
|
||||
glActiveTexture(GL_TEXTURE0);
|
||||
glBindTexture(GL_TEXTURE_CUBE_MAP, irradianceMap);
|
||||
glActiveTexture(GL_TEXTURE1);
|
||||
glBindTexture(GL_TEXTURE_CUBE_MAP, prefilterMap);
|
||||
glActiveTexture(GL_TEXTURE2);
|
||||
glBindTexture(GL_TEXTURE_2D, brdfLUTTexture);
|
||||
|
||||
// render rows*column number of spheres with material properties defined by textures (they all have the same material properties)
|
||||
glm::mat4 model;
|
||||
for (int row = 0; row < nrRows; ++row)
|
||||
{
|
||||
glUniform1f(glGetUniformLocation(pbrShader.Program, "metallic"), (float)row / (float)nrRows);
|
||||
for (int col = 0; col < nrColumns; ++col)
|
||||
{
|
||||
// we clamp the roughness to 0.025 - 1.0 as perfectly smooth surfaces (roughness of 0.0) tend to look a bit off
|
||||
// on direct lighting.
|
||||
glUniform1f(glGetUniformLocation(pbrShader.Program, "roughness"), glm::clamp((float)col / (float)nrColumns, 0.05f, 1.0f));
|
||||
|
||||
model = glm::mat4();
|
||||
model = glm::translate(model, glm::vec3(
|
||||
(float)(col - (nrColumns / 2)) * spacing,
|
||||
(float)(row - (nrRows / 2)) * spacing,
|
||||
-2.0f
|
||||
));
|
||||
glUniformMatrix4fv(glGetUniformLocation(pbrShader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
|
||||
renderSphere();
|
||||
}
|
||||
}
|
||||
|
||||
// render light source (simply re-render sphere at light positions)
|
||||
// this looks a bit off as we use the same shader, but it'll make their positions obvious and
|
||||
// keeps the codeprint small.
|
||||
for (unsigned int i = 0; i < sizeof(lightPositions) / sizeof(lightPositions[0]); ++i)
|
||||
{
|
||||
glm::vec3 newPos = lightPositions[i] + glm::vec3(sin(glfwGetTime() * 5.0) * 5.0, 0.0, 0.0);
|
||||
newPos = lightPositions[i];
|
||||
glUniform3fv(glGetUniformLocation(pbrShader.Program, ("lightPositions[" + std::to_string(i) + "]").c_str()), 1, &newPos[0]); \
|
||||
glUniform3fv(glGetUniformLocation(pbrShader.Program, ("lightColors[" + std::to_string(i) + "]").c_str()), 1, &lightColors[i][0]);
|
||||
|
||||
model = glm::mat4();
|
||||
model = glm::translate(model, newPos);
|
||||
model = glm::scale(model, glm::vec3(0.5f));
|
||||
glUniformMatrix4fv(glGetUniformLocation(pbrShader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
|
||||
renderSphere();
|
||||
}
|
||||
|
||||
// render skybox (render as last to prevent overdraw)
|
||||
backgroundShader.Use();
|
||||
glUniformMatrix4fv(glGetUniformLocation(backgroundShader.Program, "view"), 1, GL_FALSE, glm::value_ptr(view));
|
||||
glActiveTexture(GL_TEXTURE0);
|
||||
glBindTexture(GL_TEXTURE_CUBE_MAP, envCubemap);
|
||||
//glBindTexture(GL_TEXTURE_CUBE_MAP, irradianceMap); // display irradiance map
|
||||
//glBindTexture(GL_TEXTURE_CUBE_MAP, prefilterMap); // display prefilter map
|
||||
renderCube();
|
||||
|
||||
// render BRDF map to screen
|
||||
//brdfShader.Use();
|
||||
//RenderQuad();
|
||||
|
||||
// Swap the buffers
|
||||
glfwSwapBuffers(window);
|
||||
}
|
||||
|
||||
glfwTerminate();
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
// renders (and builds at first invocation) a sphere
|
||||
unsigned int sphereVAO = 0;
|
||||
unsigned int indexCount;
|
||||
void renderSphere()
|
||||
{
|
||||
if (sphereVAO == 0)
|
||||
{
|
||||
glGenVertexArrays(1, &sphereVAO);
|
||||
|
||||
unsigned int vbo, ebo;
|
||||
glGenBuffers(1, &vbo);
|
||||
glGenBuffers(1, &ebo);
|
||||
|
||||
std::vector<glm::vec3> positions;
|
||||
std::vector<glm::vec2> uv;
|
||||
std::vector<glm::vec3> normals;
|
||||
std::vector<unsigned int> indices;
|
||||
|
||||
const unsigned int X_SEGMENTS = 64;
|
||||
const unsigned int Y_SEGMENTS = 64;
|
||||
const float PI = 3.14159265359;
|
||||
for (unsigned int y = 0; y <= Y_SEGMENTS; ++y)
|
||||
{
|
||||
for (unsigned int x = 0; x <= X_SEGMENTS; ++x)
|
||||
{
|
||||
float xSegment = (float)x / (float)X_SEGMENTS;
|
||||
float ySegment = (float)y / (float)Y_SEGMENTS;
|
||||
float xPos = std::cos(xSegment * 2.0f * PI) * std::sin(ySegment * PI);
|
||||
float yPos = std::cos(ySegment * PI);
|
||||
float zPos = std::sin(xSegment * 2.0f * PI) * std::sin(ySegment * PI);
|
||||
|
||||
positions.push_back(glm::vec3(xPos, yPos, zPos));
|
||||
uv.push_back(glm::vec2(xSegment, ySegment));
|
||||
normals.push_back(glm::vec3(xPos, yPos, zPos));
|
||||
}
|
||||
}
|
||||
|
||||
bool oddRow = false;
|
||||
for (int y = 0; y < Y_SEGMENTS; ++y)
|
||||
{
|
||||
if (!oddRow) // even rows: y == 0, y == 2; and so on
|
||||
{
|
||||
for (int x = 0; x <= X_SEGMENTS; ++x)
|
||||
{
|
||||
indices.push_back(y * (X_SEGMENTS + 1) + x);
|
||||
indices.push_back((y + 1) * (X_SEGMENTS + 1) + x);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (int x = X_SEGMENTS; x >= 0; --x)
|
||||
{
|
||||
indices.push_back((y + 1) * (X_SEGMENTS + 1) + x);
|
||||
indices.push_back(y * (X_SEGMENTS + 1) + x);
|
||||
}
|
||||
}
|
||||
oddRow = !oddRow;
|
||||
}
|
||||
indexCount = indices.size();
|
||||
|
||||
std::vector<float> data;
|
||||
for (int i = 0; i < positions.size(); ++i)
|
||||
{
|
||||
data.push_back(positions[i].x);
|
||||
data.push_back(positions[i].y);
|
||||
data.push_back(positions[i].z);
|
||||
if (uv.size() > 0)
|
||||
{
|
||||
data.push_back(uv[i].x);
|
||||
data.push_back(uv[i].y);
|
||||
}
|
||||
if (normals.size() > 0)
|
||||
{
|
||||
data.push_back(normals[i].x);
|
||||
data.push_back(normals[i].y);
|
||||
data.push_back(normals[i].z);
|
||||
}
|
||||
}
|
||||
glBindVertexArray(sphereVAO);
|
||||
glBindBuffer(GL_ARRAY_BUFFER, vbo);
|
||||
glBufferData(GL_ARRAY_BUFFER, data.size() * sizeof(float), &data[0], GL_STATIC_DRAW);
|
||||
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ebo);
|
||||
glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices.size() * sizeof(unsigned int), &indices[0], GL_STATIC_DRAW);
|
||||
float stride = (3 + 2 + 3) * sizeof(float);
|
||||
glEnableVertexAttribArray(0);
|
||||
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, stride, (GLvoid*)0);
|
||||
glEnableVertexAttribArray(1);
|
||||
glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, stride, (GLvoid*)(3 * sizeof(float)));
|
||||
glEnableVertexAttribArray(2);
|
||||
glVertexAttribPointer(2, 3, GL_FLOAT, GL_FALSE, stride, (GLvoid*)(5 * sizeof(float)));
|
||||
}
|
||||
|
||||
glBindVertexArray(sphereVAO);
|
||||
glDrawElements(GL_TRIANGLE_STRIP, indexCount, GL_UNSIGNED_INT, 0);
|
||||
}
|
||||
// RenderCube() Renders a 1x1 3D cube in NDC.
|
||||
GLuint cubeVAO = 0;
|
||||
GLuint cubeVBO = 0;
|
||||
void renderCube()
|
||||
{
|
||||
// Initialize (if necessary)
|
||||
if (cubeVAO == 0)
|
||||
{
|
||||
GLfloat vertices[] = {
|
||||
// Back face
|
||||
-1.0f, -1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, // Bottom-left
|
||||
1.0f, 1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f, // top-right
|
||||
1.0f, -1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 1.0f, 0.0f, // bottom-right
|
||||
1.0f, 1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f, // top-right
|
||||
-1.0f, -1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, // bottom-left
|
||||
-1.0f, 1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 1.0f,// top-left
|
||||
// Front face
|
||||
-1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, // bottom-left
|
||||
1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, // bottom-right
|
||||
1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, // top-right
|
||||
1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, // top-right
|
||||
-1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, // top-left
|
||||
-1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, // bottom-left
|
||||
// Left face
|
||||
-1.0f, 1.0f, 1.0f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-right
|
||||
-1.0f, 1.0f, -1.0f, -1.0f, 0.0f, 0.0f, 1.0f, 1.0f, // top-left
|
||||
-1.0f, -1.0f, -1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-left
|
||||
-1.0f, -1.0f, -1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-left
|
||||
-1.0f, -1.0f, 1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 0.0f, // bottom-right
|
||||
-1.0f, 1.0f, 1.0f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-right
|
||||
// Right face
|
||||
1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-left
|
||||
1.0f, -1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-right
|
||||
1.0f, 1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, // top-right
|
||||
1.0f, -1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-right
|
||||
1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-left
|
||||
1.0f, -1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, // bottom-left
|
||||
// Bottom face
|
||||
-1.0f, -1.0f, -1.0f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f, // top-right
|
||||
1.0f, -1.0f, -1.0f, 0.0f, -1.0f, 0.0f, 1.0f, 1.0f, // top-left
|
||||
1.0f, -1.0f, 1.0f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f,// bottom-left
|
||||
1.0f, -1.0f, 1.0f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f, // bottom-left
|
||||
-1.0f, -1.0f, 1.0f, 0.0f, -1.0f, 0.0f, 0.0f, 0.0f, // bottom-right
|
||||
-1.0f, -1.0f, -1.0f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f, // top-right
|
||||
// Top face
|
||||
-1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f,// top-left
|
||||
1.0f, 1.0f , 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, // bottom-right
|
||||
1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, // top-right
|
||||
1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, // bottom-right
|
||||
-1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f,// top-left
|
||||
-1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f // bottom-left
|
||||
};
|
||||
glGenVertexArrays(1, &cubeVAO);
|
||||
glGenBuffers(1, &cubeVBO);
|
||||
// Fill buffer
|
||||
glBindBuffer(GL_ARRAY_BUFFER, cubeVBO);
|
||||
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
|
||||
// Link vertex attributes
|
||||
glBindVertexArray(cubeVAO);
|
||||
glEnableVertexAttribArray(0);
|
||||
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)0);
|
||||
glEnableVertexAttribArray(1);
|
||||
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)(3 * sizeof(GLfloat)));
|
||||
glEnableVertexAttribArray(2);
|
||||
glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)(6 * sizeof(GLfloat)));
|
||||
glBindBuffer(GL_ARRAY_BUFFER, 0);
|
||||
glBindVertexArray(0);
|
||||
}
|
||||
// Render Cube
|
||||
glBindVertexArray(cubeVAO);
|
||||
glDrawArrays(GL_TRIANGLES, 0, 36);
|
||||
glBindVertexArray(0);
|
||||
}
|
||||
|
||||
// RenderQuad() Renders a 1x1 XY quad in NDC
|
||||
GLuint quadVAO = 0;
|
||||
GLuint quadVBO;
|
||||
void RenderQuad()
|
||||
{
|
||||
if (quadVAO == 0)
|
||||
{
|
||||
GLfloat quadVertices[] = {
|
||||
// Positions // Texture Coords
|
||||
-1.0f, 1.0f, 0.0f, 0.0f, 1.0f,
|
||||
-1.0f, -1.0f, 0.0f, 0.0f, 0.0f,
|
||||
1.0f, 1.0f, 0.0f, 1.0f, 1.0f,
|
||||
1.0f, -1.0f, 0.0f, 1.0f, 0.0f,
|
||||
};
|
||||
// Setup plane VAO
|
||||
glGenVertexArrays(1, &quadVAO);
|
||||
glGenBuffers(1, &quadVBO);
|
||||
glBindVertexArray(quadVAO);
|
||||
glBindBuffer(GL_ARRAY_BUFFER, quadVBO);
|
||||
glBufferData(GL_ARRAY_BUFFER, sizeof(quadVertices), &quadVertices, GL_STATIC_DRAW);
|
||||
glEnableVertexAttribArray(0);
|
||||
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 5 * sizeof(GLfloat), (GLvoid*)0);
|
||||
glEnableVertexAttribArray(1);
|
||||
glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 5 * sizeof(GLfloat), (GLvoid*)(3 * sizeof(GLfloat)));
|
||||
}
|
||||
glBindVertexArray(quadVAO);
|
||||
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
|
||||
glBindVertexArray(0);
|
||||
}
|
||||
|
||||
// This function loads a texture from file. Note: texture loading functions like these are usually
|
||||
// managed by a 'Resource Manager' that manages all resources (like textures, models, audio).
|
||||
// For learning purposes we'll just define it as a utility function.
|
||||
unsigned int loadTexture(char const * path)
|
||||
{
|
||||
//Generate texture ID and load texture data
|
||||
unsigned int textureID;
|
||||
glGenTextures(1, &textureID);
|
||||
int width, height, nrComponents;
|
||||
unsigned char *data = stbi_load(path, &width, &height, &nrComponents, 0);
|
||||
if (data)
|
||||
{
|
||||
GLenum format;
|
||||
if (nrComponents == 1)
|
||||
format = GL_RED;
|
||||
else if (nrComponents == 3)
|
||||
format = GL_RGB;
|
||||
else if (nrComponents == 4)
|
||||
format = GL_RGBA;
|
||||
|
||||
glBindTexture(GL_TEXTURE_2D, textureID);
|
||||
glTexImage2D(GL_TEXTURE_2D, 0, format, width, height, 0, format, GL_UNSIGNED_BYTE, data);
|
||||
glGenerateMipmap(GL_TEXTURE_2D);
|
||||
|
||||
// Parameters
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
|
||||
|
||||
stbi_image_free(data);
|
||||
}
|
||||
else
|
||||
{
|
||||
std::cout << "Texture failed to load at path: " << path << std::endl;
|
||||
stbi_image_free(data);
|
||||
}
|
||||
|
||||
return textureID;
|
||||
}
|
||||
|
||||
#pragma region "User input"
|
||||
|
||||
bool keys[1024];
|
||||
bool keysPressed[1024];
|
||||
// Moves/alters the camera positions based on user input
|
||||
void Do_Movement()
|
||||
{
|
||||
// Camera controls
|
||||
if (keys[GLFW_KEY_W])
|
||||
camera.ProcessKeyboard(FORWARD, deltaTime);
|
||||
if (keys[GLFW_KEY_S])
|
||||
camera.ProcessKeyboard(BACKWARD, deltaTime);
|
||||
if (keys[GLFW_KEY_A])
|
||||
camera.ProcessKeyboard(LEFT, deltaTime);
|
||||
if (keys[GLFW_KEY_D])
|
||||
camera.ProcessKeyboard(RIGHT, deltaTime);
|
||||
}
|
||||
|
||||
// Is called whenever a key is pressed/released via GLFW
|
||||
void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode)
|
||||
{
|
||||
if (key == GLFW_KEY_ESCAPE && action == GLFW_PRESS)
|
||||
glfwSetWindowShouldClose(window, GL_TRUE);
|
||||
|
||||
if (key >= 0 && key <= 1024)
|
||||
{
|
||||
if (action == GLFW_PRESS)
|
||||
keys[key] = true;
|
||||
else if (action == GLFW_RELEASE)
|
||||
{
|
||||
keys[key] = false;
|
||||
keysPressed[key] = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
GLfloat lastX = 400, lastY = 300;
|
||||
bool firstMouse = true;
|
||||
// Moves/alters the camera positions based on user input
|
||||
void mouse_callback(GLFWwindow* window, double xpos, double ypos)
|
||||
{
|
||||
if (firstMouse)
|
||||
{
|
||||
lastX = xpos;
|
||||
lastY = ypos;
|
||||
firstMouse = false;
|
||||
}
|
||||
|
||||
GLfloat xoffset = xpos - lastX;
|
||||
GLfloat yoffset = lastY - ypos;
|
||||
|
||||
lastX = xpos;
|
||||
lastY = ypos;
|
||||
|
||||
camera.ProcessMouseMovement(xoffset, yoffset);
|
||||
}
|
||||
|
||||
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
|
||||
{
|
||||
camera.ProcessMouseScroll(yoffset);
|
||||
}
|
||||
|
||||
#pragma endregion
|
||||
177
src/6.pbr/2.2.2.ibl_specular_textured/2.2.2.pbr.frag
Normal file
@@ -0,0 +1,177 @@
|
||||
#version 330 core
|
||||
out vec4 FragColor;
|
||||
in vec2 TexCoords;
|
||||
in vec3 WorldPos;
|
||||
in vec3 Normal;
|
||||
in mat3 TBN;
|
||||
|
||||
// material parameters
|
||||
uniform sampler2D albedoMap;
|
||||
uniform sampler2D normalMap;
|
||||
uniform sampler2D metallicMap;
|
||||
uniform sampler2D roughnessMap;
|
||||
uniform sampler2D aoMap;
|
||||
|
||||
// IBL
|
||||
uniform samplerCube irradianceMap;
|
||||
uniform samplerCube prefilterMap;
|
||||
uniform sampler2D brdfLUT;
|
||||
|
||||
// lights
|
||||
uniform vec3 lightPositions[4];
|
||||
uniform vec3 lightColors[4];
|
||||
|
||||
uniform vec3 camPos;
|
||||
|
||||
const float PI = 3.14159265359;
|
||||
// ----------------------------------------------------------------------------
|
||||
// Easy trick to get tangent-normals to world-space to keep PBR code simplified.
|
||||
// Don't worry if you don't get what's going on; you generally want to do normal
|
||||
// mapping the usual way for performance anways; I do plan make a note of this
|
||||
// technique somewhere later in the normal mapping tutorial.
|
||||
vec3 getNormalFromMap()
|
||||
{
|
||||
vec3 tangentNormal = texture(normalMap, TexCoords).xyz * 2.0 - 1.0;
|
||||
|
||||
vec3 Q1 = dFdx(WorldPos);
|
||||
vec3 Q2 = dFdy(WorldPos);
|
||||
vec2 st1 = dFdx(TexCoords);
|
||||
vec2 st2 = dFdy(TexCoords);
|
||||
|
||||
vec3 N = normalize(Normal);
|
||||
vec3 T = normalize(Q1*st2.t - Q2*st1.t);
|
||||
vec3 B = -normalize(cross(N, T));
|
||||
mat3 TBN = mat3(T, B, N);
|
||||
|
||||
return normalize(TBN * tangentNormal);
|
||||
}
|
||||
// ----------------------------------------------------------------------------
|
||||
float DistributionGGX(vec3 N, vec3 H, float roughness)
|
||||
{
|
||||
float a = roughness*roughness;
|
||||
float a2 = a*a;
|
||||
float NdotH = max(dot(N, H), 0.0);
|
||||
float NdotH2 = NdotH*NdotH;
|
||||
|
||||
float nom = a2;
|
||||
float denom = (NdotH2 * (a2 - 1.0) + 1.0);
|
||||
denom = PI * denom * denom;
|
||||
|
||||
return nom / denom;
|
||||
}
|
||||
// ----------------------------------------------------------------------------
|
||||
float GeometrySchlickGGX(float NdotV, float roughness)
|
||||
{
|
||||
float r = (roughness + 1.0);
|
||||
float k = (r*r) / 8.0;
|
||||
|
||||
float nom = NdotV;
|
||||
float denom = NdotV * (1.0 - k) + k;
|
||||
|
||||
return nom / denom;
|
||||
}
|
||||
// ----------------------------------------------------------------------------
|
||||
float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness)
|
||||
{
|
||||
float NdotV = max(dot(N, V), 0.0);
|
||||
float NdotL = max(dot(N, L), 0.0);
|
||||
float ggx2 = GeometrySchlickGGX(NdotV, roughness);
|
||||
float ggx1 = GeometrySchlickGGX(NdotL, roughness);
|
||||
|
||||
return ggx1 * ggx2;
|
||||
}
|
||||
// ----------------------------------------------------------------------------
|
||||
vec3 fresnelSchlick(float cosTheta, vec3 F0)
|
||||
{
|
||||
return F0 + (1.0 - F0) * pow(1.0 - cosTheta, 5.0);
|
||||
}
|
||||
// ----------------------------------------------------------------------------
|
||||
vec3 fresnelSchlickRoughness(float cosTheta, vec3 F0, float roughness)
|
||||
{
|
||||
return F0 + (max(vec3(1.0 - roughness), F0) - F0) * pow(1.0 - cosTheta, 5.0);
|
||||
}
|
||||
// ----------------------------------------------------------------------------
|
||||
void main()
|
||||
{
|
||||
// material properties
|
||||
vec3 albedo = pow(texture(albedoMap, TexCoords).rgb, vec3(2.2));
|
||||
float metallic = texture(metallicMap, TexCoords).r;
|
||||
float roughness = texture(roughnessMap, TexCoords).r;
|
||||
float ao = texture(aoMap, TexCoords).r;
|
||||
|
||||
|
||||
// input lighting data
|
||||
vec3 N = getNormalFromMap();
|
||||
vec3 V = normalize(camPos - WorldPos);
|
||||
vec3 R = reflect(-V, N);
|
||||
|
||||
// calculate reflectance at normal incidence; if dia-electric (like plastic) use F0
|
||||
// of 0.04 and if it's a metal, use their albedo color as F0 (metallic workflow)
|
||||
vec3 F0 = vec3(0.04);
|
||||
F0 = mix(F0, albedo, metallic);
|
||||
|
||||
// reflectance equation
|
||||
vec3 Lo = vec3(0.0);
|
||||
for(int i = 0; i < 4; ++i)
|
||||
{
|
||||
// calculate per-light radiance
|
||||
vec3 L = normalize(lightPositions[i] - WorldPos);
|
||||
vec3 H = normalize(V + L);
|
||||
float distance = length(lightPositions[i] - WorldPos);
|
||||
float attenuation = 1.0 / (distance * distance);
|
||||
vec3 radiance = lightColors[i] * attenuation;
|
||||
|
||||
// Cook-Torrance BRDF
|
||||
float NDF = DistributionGGX(N, H, roughness);
|
||||
float G = GeometrySmith(N, V, L, roughness);
|
||||
vec3 F = fresnelSchlick(max(dot(H, V), 0.0), F0);
|
||||
|
||||
vec3 nominator = NDF * G * F;
|
||||
float denominator = 4 * max(dot(N, V), 0.0) * max(dot(N, L), 0.0) + 0.001; // 0.001 to prevent divide by zero.
|
||||
vec3 brdf = nominator / denominator;
|
||||
|
||||
// kS is equal to Fresnel
|
||||
vec3 kS = F;
|
||||
// for energy conservation, the diffuse and specular light can't
|
||||
// be above 1.0 (unless the surface emits light); to preserve this
|
||||
// relationship the diffuse component (kD) should equal 1.0 - kS.
|
||||
vec3 kD = vec3(1.0) - kS;
|
||||
// multiply kD by the inverse metalness such that only non-metals
|
||||
// have diffuse lighting, or a linear blend if partly metal (pure metals
|
||||
// have no diffuse light).
|
||||
kD *= 1.0 - metallic;
|
||||
|
||||
// scale light by NdotL
|
||||
float NdotL = max(dot(N, L), 0.0);
|
||||
|
||||
// add to outgoing radiance Lo
|
||||
Lo += (kD * albedo / PI + brdf) * radiance * NdotL; // note that we already multiplied the BRDF by the Fresnel (kS) so we won't multiply by kS again
|
||||
}
|
||||
|
||||
// ambient lighting (we now use IBL as the ambient term)
|
||||
vec3 F = fresnelSchlickRoughness(max(dot(N, V), 0.0), F0, roughness);
|
||||
|
||||
vec3 kS = F;
|
||||
vec3 kD = 1.0 - kS;
|
||||
kD *= 1.0 - metallic;
|
||||
|
||||
vec3 irradiance = texture(irradianceMap, N).rgb;
|
||||
vec3 diffuse = irradiance * albedo;
|
||||
|
||||
// sample both the pre-filter map and the BRDF lut and combine them together as per the Split-Sum approximation to get the IBL specular part.
|
||||
const float MAX_REFLECTION_LOD = 4.0;
|
||||
vec3 prefilteredColor = textureLod(prefilterMap, R, roughness * MAX_REFLECTION_LOD).rgb;
|
||||
vec2 brdf = texture(brdfLUT, vec2(max(dot(N, V), 0.0), roughness)).rg;
|
||||
vec3 specular = prefilteredColor * (F * brdf.x + brdf.y);
|
||||
|
||||
vec3 ambient = (kD * diffuse + specular) * ao;
|
||||
|
||||
vec3 color = ambient + Lo;
|
||||
|
||||
// HDR tonemapping
|
||||
color = color / (color + vec3(1.0));
|
||||
// gamma correct
|
||||
color = pow(color, vec3(1.0/2.2));
|
||||
|
||||
FragColor = vec4(color , 1.0);
|
||||
}
|
||||
21
src/6.pbr/2.2.2.ibl_specular_textured/2.2.2.pbr.vs
Normal file
@@ -0,0 +1,21 @@
|
||||
#version 330 core
|
||||
layout (location = 0) in vec3 pos;
|
||||
layout (location = 1) in vec2 texCoords;
|
||||
layout (location = 2) in vec3 normal;
|
||||
|
||||
out vec2 TexCoords;
|
||||
out vec3 WorldPos;
|
||||
out vec3 Normal;
|
||||
|
||||
uniform mat4 projection;
|
||||
uniform mat4 view;
|
||||
uniform mat4 model;
|
||||
|
||||
void main()
|
||||
{
|
||||
TexCoords = texCoords;
|
||||
WorldPos = vec3(model * vec4(pos, 1.0f));
|
||||
Normal = mat3(model) * normal;
|
||||
|
||||
gl_Position = projection * view * vec4(WorldPos, 1.0);
|
||||
}
|
||||
835
src/6.pbr/2.2.2.ibl_specular_textured/ibl_specular_textured.cpp
Normal file
@@ -0,0 +1,835 @@
|
||||
// Std. Includes
|
||||
#include <string>
|
||||
|
||||
// GLEW
|
||||
#define GLEW_STATIC
|
||||
#include <GL/glew.h>
|
||||
|
||||
// GLFW
|
||||
#include <GLFW/glfw3.h>
|
||||
|
||||
// GL includes
|
||||
#include <learnopengl/shader.h>
|
||||
#include <learnopengl/camera.h>
|
||||
|
||||
// GLM Mathemtics
|
||||
#include <glm/glm.hpp>
|
||||
#include <glm/gtc/matrix_transform.hpp>
|
||||
#include <glm/gtc/type_ptr.hpp>
|
||||
|
||||
// Other Libs
|
||||
#include <learnopengl/filesystem.h>
|
||||
|
||||
#include "stb_image.h"
|
||||
|
||||
// Properties
|
||||
const GLuint SCR_WIDTH = 1280, SCR_HEIGHT = 720;
|
||||
|
||||
// Function prototypes
|
||||
void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode);
|
||||
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);
|
||||
void mouse_callback(GLFWwindow* window, double xpos, double ypos);
|
||||
void Do_Movement();
|
||||
GLuint loadTexture(GLchar const * path);
|
||||
void renderSphere();
|
||||
void renderCube();
|
||||
void RenderQuad();
|
||||
|
||||
// camera
|
||||
Camera camera(glm::vec3(0.0f, 0.0f, 3.0f));
|
||||
|
||||
// timing
|
||||
GLfloat deltaTime = 0.0f;
|
||||
GLfloat lastFrame = 0.0f;
|
||||
|
||||
// The MAIN function, from here we start the application and run the Game loop
|
||||
int main()
|
||||
{
|
||||
// GLFW Init
|
||||
// ---------
|
||||
glfwInit();
|
||||
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
|
||||
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
|
||||
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
|
||||
glfwWindowHint(GLFW_SAMPLES, 4);
|
||||
glfwWindowHint(GLFW_RESIZABLE, GL_FALSE);
|
||||
|
||||
GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", nullptr, nullptr); // Windowed
|
||||
glfwMakeContextCurrent(window);
|
||||
|
||||
// GLFW config
|
||||
// -----------
|
||||
glfwSetKeyCallback(window, key_callback);
|
||||
glfwSetCursorPosCallback(window, mouse_callback);
|
||||
glfwSetScrollCallback(window, scroll_callback);
|
||||
|
||||
glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);
|
||||
|
||||
// Initialize GLEW to setup the OpenGL Function pointers
|
||||
// -----------------------------------------------------
|
||||
glewExperimental = GL_TRUE;
|
||||
glewInit();
|
||||
glGetError();
|
||||
|
||||
// Setup OpenGL state
|
||||
// ------------------
|
||||
glEnable(GL_DEPTH_TEST);
|
||||
// set depth function to less than AND equal for skybox depth trick.
|
||||
glDepthFunc(GL_LEQUAL);
|
||||
// enable seamless cubemap sampling for lower mip levels in the pre-filter map.
|
||||
glEnable(GL_TEXTURE_CUBE_MAP_SEAMLESS);
|
||||
|
||||
// load and initialize shaders
|
||||
// ---------------------------
|
||||
Shader pbrShader("2.2.2.pbr.vs", "2.2.2.pbr.frag");
|
||||
Shader equirectangularToCubemapShader("2.2.1.cubemap.vs", "2.2.1.equirectangular_to_cubemap.frag");
|
||||
Shader irradianceShader("2.2.1.cubemap.vs", "2.2.1.irradiance_convolution.frag");
|
||||
Shader prefilterShader("2.2.1.cubemap.vs", "2.2.1.prefilter.frag");
|
||||
Shader brdfShader("2.2.1.brdf.vs", "2.2.1.brdf.frag");
|
||||
Shader backgroundShader("2.2.1.background.vs", "2.2.1.background.frag");
|
||||
|
||||
pbrShader.Use();
|
||||
glUniform1i(glGetUniformLocation(pbrShader.Program, "irradianceMap"), 0);
|
||||
glUniform1i(glGetUniformLocation(pbrShader.Program, "prefilterMap"), 1);
|
||||
glUniform1i(glGetUniformLocation(pbrShader.Program, "brdfLUT"), 2);
|
||||
glUniform1i(glGetUniformLocation(pbrShader.Program, "albedoMap"), 3);
|
||||
glUniform1i(glGetUniformLocation(pbrShader.Program, "normalMap"), 4);
|
||||
glUniform1i(glGetUniformLocation(pbrShader.Program, "metallicMap"), 5);
|
||||
glUniform1i(glGetUniformLocation(pbrShader.Program, "roughnessMap"), 6);
|
||||
glUniform1i(glGetUniformLocation(pbrShader.Program, "aoMap"), 7);
|
||||
|
||||
backgroundShader.Use();
|
||||
glUniform1i(glGetUniformLocation(backgroundShader.Program, "environmentMap"), 0);
|
||||
|
||||
// load PBR material textures
|
||||
// --------------------------
|
||||
// rusted iron
|
||||
unsigned int ironAlbedoMap = loadTexture(FileSystem::getPath("resources/textures/pbr/rusted_iron/albedo.png").c_str());
|
||||
unsigned int ironNormalMap = loadTexture(FileSystem::getPath("resources/textures/pbr/rusted_iron/normal.png").c_str());
|
||||
unsigned int ironMetallicMap = loadTexture(FileSystem::getPath("resources/textures/pbr/rusted_iron/metallic.png").c_str());
|
||||
unsigned int ironRoughnessMap = loadTexture(FileSystem::getPath("resources/textures/pbr/rusted_iron/roughness.png").c_str());
|
||||
unsigned int ironAOMap = loadTexture(FileSystem::getPath("resources/textures/pbr/rusted_iron/ao.png").c_str());
|
||||
|
||||
// gold
|
||||
unsigned int goldAlbedoMap = loadTexture(FileSystem::getPath("resources/textures/pbr/gold/albedo.png").c_str());
|
||||
unsigned int goldNormalMap = loadTexture(FileSystem::getPath("resources/textures/pbr/gold/normal.png").c_str());
|
||||
unsigned int goldMetallicMap = loadTexture(FileSystem::getPath("resources/textures/pbr/gold/metallic.png").c_str());
|
||||
unsigned int goldRoughnessMap = loadTexture(FileSystem::getPath("resources/textures/pbr/gold/roughness.png").c_str());
|
||||
unsigned int goldAOMap = loadTexture(FileSystem::getPath("resources/textures/pbr/gold/ao.png").c_str());
|
||||
|
||||
// grass
|
||||
unsigned int grassAlbedoMap = loadTexture(FileSystem::getPath("resources/textures/pbr/grass/albedo.png").c_str());
|
||||
unsigned int grassNormalMap = loadTexture(FileSystem::getPath("resources/textures/pbr/grass/normal.png").c_str());
|
||||
unsigned int grassMetallicMap = loadTexture(FileSystem::getPath("resources/textures/pbr/grass/metallic.png").c_str());
|
||||
unsigned int grassRoughnessMap = loadTexture(FileSystem::getPath("resources/textures/pbr/grass/roughness.png").c_str());
|
||||
unsigned int grassAOMap = loadTexture(FileSystem::getPath("resources/textures/pbr/grass/ao.png").c_str());
|
||||
|
||||
// plastic
|
||||
unsigned int plasticAlbedoMap = loadTexture(FileSystem::getPath("resources/textures/pbr/plastic/albedo.png").c_str());
|
||||
unsigned int plasticNormalMap = loadTexture(FileSystem::getPath("resources/textures/pbr/plastic/normal.png").c_str());
|
||||
unsigned int plasticMetallicMap = loadTexture(FileSystem::getPath("resources/textures/pbr/plastic/metallic.png").c_str());
|
||||
unsigned int plasticRoughnessMap = loadTexture(FileSystem::getPath("resources/textures/pbr/plastic/roughness.png").c_str());
|
||||
unsigned int plasticAOMap = loadTexture(FileSystem::getPath("resources/textures/pbr/plastic/ao.png").c_str());
|
||||
|
||||
// wall
|
||||
unsigned int wallAlbedoMap = loadTexture(FileSystem::getPath("resources/textures/pbr/wall/albedo.png").c_str());
|
||||
unsigned int wallNormalMap = loadTexture(FileSystem::getPath("resources/textures/pbr/wall/normal.png").c_str());
|
||||
unsigned int wallMetallicMap = loadTexture(FileSystem::getPath("resources/textures/pbr/wall/metallic.png").c_str());
|
||||
unsigned int wallRoughnessMap = loadTexture(FileSystem::getPath("resources/textures/pbr/wall/roughness.png").c_str());
|
||||
unsigned int wallAOMap = loadTexture(FileSystem::getPath("resources/textures/pbr/wall/ao.png").c_str());
|
||||
|
||||
// lights
|
||||
// ------
|
||||
glm::vec3 lightPositions[] = {
|
||||
glm::vec3(-10.0f, 10.0f, 10.0f),
|
||||
glm::vec3( 10.0f, 10.0f, 10.0f),
|
||||
glm::vec3(-10.0f, -10.0f, 10.0f),
|
||||
glm::vec3( 10.0f, -10.0f, 10.0f),
|
||||
};
|
||||
glm::vec3 lightColors[] = {
|
||||
glm::vec3(300.0f, 300.0f, 300.0f),
|
||||
glm::vec3(300.0f, 300.0f, 300.0f),
|
||||
glm::vec3(300.0f, 300.0f, 300.0f),
|
||||
glm::vec3(300.0f, 300.0f, 300.0f)
|
||||
};
|
||||
int nrRows = 7;
|
||||
int nrColumns = 7;
|
||||
float spacing = 2.5;
|
||||
|
||||
// pbr: setup framebuffer
|
||||
// ----------------------
|
||||
unsigned int captureFBO;
|
||||
unsigned int captureRBO;
|
||||
glGenFramebuffers(1, &captureFBO);
|
||||
glGenRenderbuffers(1, &captureRBO);
|
||||
|
||||
glBindFramebuffer(GL_FRAMEBUFFER, captureFBO);
|
||||
glBindRenderbuffer(GL_RENDERBUFFER, captureRBO);
|
||||
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, 512, 512);
|
||||
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, captureRBO);
|
||||
|
||||
// pbr: load the HDR environment map
|
||||
// ---------------------------------
|
||||
stbi_set_flip_vertically_on_load(true);
|
||||
int width, height, nrComponents;
|
||||
float *data = stbi_loadf(FileSystem::getPath("resources/textures/hdr/newport_loft.hdr").c_str(), &width, &height, &nrComponents, 0);
|
||||
unsigned int hdrTexture;
|
||||
if (data)
|
||||
{
|
||||
glGenTextures(1, &hdrTexture);
|
||||
glBindTexture(GL_TEXTURE_2D, hdrTexture);
|
||||
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB16F, width, height, 0, GL_RGB, GL_FLOAT, data); // note how we specify the texture's data value to be float
|
||||
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
|
||||
|
||||
stbi_image_free(data);
|
||||
}
|
||||
else
|
||||
{
|
||||
std::cout << "Failed to load HDR image." << std::endl;
|
||||
}
|
||||
|
||||
// pbr: setup cubemap to render to and attach to framebuffer
|
||||
// ---------------------------------------------------------
|
||||
unsigned int envCubemap;
|
||||
glGenTextures(1, &envCubemap);
|
||||
glBindTexture(GL_TEXTURE_CUBE_MAP, envCubemap);
|
||||
for (unsigned int i = 0; i < 6; ++i)
|
||||
{
|
||||
glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, GL_RGB16F, 512, 512, 0, GL_RGB, GL_FLOAT, nullptr);
|
||||
}
|
||||
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
|
||||
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
|
||||
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
|
||||
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); // enable pre-filter mipmap sampling (combatting visible dots artifact)
|
||||
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
|
||||
|
||||
// pbr: set up projection and view matrices for capturing data onto the 6 cubemap face directions
|
||||
// ----------------------------------------------------------------------------------------------
|
||||
glm::mat4 captureProjection = glm::perspective(glm::radians(90.0f), 1.0f, 0.1f, 10.0f);
|
||||
glm::mat4 captureViews[] =
|
||||
{
|
||||
glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(1.0f, 0.0f, 0.0f), glm::vec3(0.0f, -1.0f, 0.0f)),
|
||||
glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(-1.0f, 0.0f, 0.0f), glm::vec3(0.0f, -1.0f, 0.0f)),
|
||||
glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f, 1.0f, 0.0f), glm::vec3(0.0f, 0.0f, 1.0f)),
|
||||
glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f, -1.0f, 0.0f), glm::vec3(0.0f, 0.0f, -1.0f)),
|
||||
glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f, 0.0f, 1.0f), glm::vec3(0.0f, -1.0f, 0.0f)),
|
||||
glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f, 0.0f, -1.0f), glm::vec3(0.0f, -1.0f, 0.0f))
|
||||
};
|
||||
|
||||
// pbr: convert HDR equirectangular environment map to cubemap equivalent
|
||||
// ----------------------------------------------------------------------
|
||||
equirectangularToCubemapShader.Use();
|
||||
glUniform1i(glGetUniformLocation(equirectangularToCubemapShader.Program, "equirectangularMap"), 0);
|
||||
glActiveTexture(GL_TEXTURE0);
|
||||
glBindTexture(GL_TEXTURE_2D, hdrTexture);
|
||||
glUniformMatrix4fv(glGetUniformLocation(equirectangularToCubemapShader.Program, "projection"), 1, GL_FALSE, glm::value_ptr(captureProjection));
|
||||
|
||||
glViewport(0, 0, 512, 512); // don't forget to configure the viewport to the capture dimensions.
|
||||
glBindFramebuffer(GL_FRAMEBUFFER, captureFBO);
|
||||
for (unsigned int i = 0; i < 6; ++i)
|
||||
{
|
||||
glUniformMatrix4fv(glGetUniformLocation(equirectangularToCubemapShader.Program, "view"), 1, GL_FALSE, glm::value_ptr(captureViews[i]));
|
||||
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, envCubemap, 0);
|
||||
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
|
||||
|
||||
renderCube();
|
||||
}
|
||||
glBindFramebuffer(GL_FRAMEBUFFER, 0);
|
||||
|
||||
// then let OpenGL generate mipmaps from first mip face (combatting visible dots artifact)
|
||||
glBindTexture(GL_TEXTURE_CUBE_MAP, envCubemap);
|
||||
glGenerateMipmap(GL_TEXTURE_CUBE_MAP);
|
||||
|
||||
// pbr: create an irradiance cubemap, and re-scale capture FBO to irradiance scale.
|
||||
// --------------------------------------------------------------------------------
|
||||
unsigned int irradianceMap;
|
||||
glGenTextures(1, &irradianceMap);
|
||||
glBindTexture(GL_TEXTURE_CUBE_MAP, irradianceMap);
|
||||
for (unsigned int i = 0; i < 6; ++i)
|
||||
{
|
||||
glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, GL_RGB32F, 32, 32, 0, GL_RGB, GL_FLOAT, nullptr);
|
||||
}
|
||||
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
|
||||
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
|
||||
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
|
||||
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
|
||||
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
|
||||
|
||||
glBindFramebuffer(GL_FRAMEBUFFER, captureFBO);
|
||||
glBindRenderbuffer(GL_RENDERBUFFER, captureRBO);
|
||||
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, 32, 32);
|
||||
|
||||
// pbr: solve diffuse integral by convolution to create an irradiance (cube)map.
|
||||
// -----------------------------------------------------------------------------
|
||||
irradianceShader.Use();
|
||||
glUniform1i(glGetUniformLocation(irradianceShader.Program, "environmentMap"), 0);
|
||||
glActiveTexture(GL_TEXTURE0);
|
||||
glBindTexture(GL_TEXTURE_CUBE_MAP, envCubemap);
|
||||
glUniformMatrix4fv(glGetUniformLocation(irradianceShader.Program, "projection"), 1, GL_FALSE, glm::value_ptr(captureProjection));
|
||||
|
||||
glViewport(0, 0, 32, 32); // don't forget to configure the viewport to the capture dimensions.
|
||||
glBindFramebuffer(GL_FRAMEBUFFER, captureFBO);
|
||||
for (unsigned int i = 0; i < 6; ++i)
|
||||
{
|
||||
glUniformMatrix4fv(glGetUniformLocation(irradianceShader.Program, "view"), 1, GL_FALSE, glm::value_ptr(captureViews[i]));
|
||||
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, irradianceMap, 0);
|
||||
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
|
||||
|
||||
renderCube();
|
||||
}
|
||||
glBindFramebuffer(GL_FRAMEBUFFER, 0);
|
||||
|
||||
// pbr: create a pre-filter cubemap, and re-scale capture FBO to pre-filter scale.
|
||||
// --------------------------------------------------------------------------------
|
||||
unsigned int prefilterMap;
|
||||
glGenTextures(1, &prefilterMap);
|
||||
glBindTexture(GL_TEXTURE_CUBE_MAP, prefilterMap);
|
||||
for (unsigned int i = 0; i < 6; ++i)
|
||||
{
|
||||
glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, GL_RGB16F, 128, 128, 0, GL_RGB, GL_FLOAT, nullptr);
|
||||
}
|
||||
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
|
||||
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
|
||||
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
|
||||
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); // be sure to set minifcation filter to mip_linear
|
||||
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
|
||||
// generate mipmaps for the cubemap so OpenGL automatically allocates the required memory.
|
||||
glGenerateMipmap(GL_TEXTURE_CUBE_MAP);
|
||||
|
||||
// pbr: run a quasi monte-carlo simulation on the environment lighting to create a prefilter (cube)map.
|
||||
// ----------------------------------------------------------------------------------------------------
|
||||
prefilterShader.Use();
|
||||
glUniform1i(glGetUniformLocation(prefilterShader.Program, "environmentMap"), 0);
|
||||
glActiveTexture(GL_TEXTURE0);
|
||||
glBindTexture(GL_TEXTURE_CUBE_MAP, envCubemap);
|
||||
glUniformMatrix4fv(glGetUniformLocation(prefilterShader.Program, "projection"), 1, GL_FALSE, glm::value_ptr(captureProjection));
|
||||
|
||||
glBindFramebuffer(GL_FRAMEBUFFER, captureFBO);
|
||||
unsigned int maxMipLevels = 5;
|
||||
for (unsigned int mip = 0; mip < maxMipLevels; ++mip)
|
||||
{
|
||||
// reisze framebuffer according to mip-level size.
|
||||
unsigned int mipWidth = 128 * std::pow(0.5, mip);
|
||||
unsigned int mipHeight = 128 * std::pow(0.5, mip);
|
||||
glBindRenderbuffer(GL_RENDERBUFFER, captureRBO);
|
||||
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, mipWidth, mipHeight);
|
||||
glViewport(0, 0, mipWidth, mipHeight);
|
||||
|
||||
float roughness = (float)mip / (float)(maxMipLevels - 1);
|
||||
glUniform1f(glGetUniformLocation(prefilterShader.Program, "roughness"), roughness);
|
||||
for (unsigned int i = 0; i < 6; ++i)
|
||||
{
|
||||
glUniformMatrix4fv(glGetUniformLocation(prefilterShader.Program, "view"), 1, GL_FALSE, glm::value_ptr(captureViews[i]));
|
||||
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, prefilterMap, mip);
|
||||
|
||||
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
|
||||
renderCube();
|
||||
}
|
||||
}
|
||||
glBindFramebuffer(GL_FRAMEBUFFER, 0);
|
||||
|
||||
// pbr: generate a 2D LUT from the BRDF equations used.
|
||||
// ----------------------------------------------------
|
||||
unsigned int brdfLUTTexture;
|
||||
glGenTextures(1, &brdfLUTTexture);
|
||||
|
||||
// pre-allocate enough memory for the LUT texture.
|
||||
glBindTexture(GL_TEXTURE_2D, brdfLUTTexture);
|
||||
glTexImage2D(GL_TEXTURE_2D, 0, GL_RG16F, 512, 512, 0, GL_RG, GL_FLOAT, 0);
|
||||
// be sure to set wrapping mode to GL_CLAMP_TO_EDGE
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
|
||||
|
||||
// then re-configure capture framebuffer object and render screen-space quad with BRDF shader.
|
||||
glBindFramebuffer(GL_FRAMEBUFFER, captureFBO);
|
||||
glBindRenderbuffer(GL_RENDERBUFFER, captureRBO);
|
||||
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, 512, 512);
|
||||
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, brdfLUTTexture, 0);
|
||||
|
||||
glViewport(0, 0, 512, 512);
|
||||
brdfShader.Use();
|
||||
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
|
||||
RenderQuad();
|
||||
|
||||
glBindFramebuffer(GL_FRAMEBUFFER, 0);
|
||||
|
||||
|
||||
// initialize static shader uniforms before rendering
|
||||
// --------------------------------------------------
|
||||
glm::mat4 projection = glm::perspective(camera.Zoom, (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f);
|
||||
pbrShader.Use();
|
||||
glUniformMatrix4fv(glGetUniformLocation(pbrShader.Program, "projection"), 1, GL_FALSE, glm::value_ptr(projection));
|
||||
backgroundShader.Use();
|
||||
glUniformMatrix4fv(glGetUniformLocation(backgroundShader.Program, "projection"), 1, GL_FALSE, glm::value_ptr(projection));
|
||||
|
||||
// then before rendering, configure the viewport to the actual screen dimensions
|
||||
glViewport(0, 0, SCR_WIDTH, SCR_HEIGHT);
|
||||
|
||||
// Game loop
|
||||
while (!glfwWindowShouldClose(window))
|
||||
{
|
||||
// set frame time
|
||||
GLfloat currentFrame = glfwGetTime();
|
||||
deltaTime = currentFrame - lastFrame;
|
||||
lastFrame = currentFrame;
|
||||
|
||||
// check and call events
|
||||
glfwPollEvents();
|
||||
Do_Movement();
|
||||
|
||||
// clear the colorbuffer
|
||||
glClearColor(0.1f, 0.1f, 0.1f, 1.0f);
|
||||
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
|
||||
|
||||
|
||||
// render scene, supplying the convoluted irradiance map to the final shader.
|
||||
// ------------------------------------------------------------------------------------------
|
||||
pbrShader.Use();
|
||||
glm::mat4 model;
|
||||
glm::mat4 view = camera.GetViewMatrix();
|
||||
glUniformMatrix4fv(glGetUniformLocation(pbrShader.Program, "view"), 1, GL_FALSE, glm::value_ptr(view));
|
||||
glUniform3fv(glGetUniformLocation(pbrShader.Program, "camPos"), 1, &camera.Position[0]);
|
||||
|
||||
|
||||
// bind pre-computed IBL data
|
||||
glActiveTexture(GL_TEXTURE0);
|
||||
glBindTexture(GL_TEXTURE_CUBE_MAP, irradianceMap);
|
||||
glActiveTexture(GL_TEXTURE1);
|
||||
glBindTexture(GL_TEXTURE_CUBE_MAP, prefilterMap);
|
||||
glActiveTexture(GL_TEXTURE2);
|
||||
glBindTexture(GL_TEXTURE_2D, brdfLUTTexture);
|
||||
|
||||
// rusted iron
|
||||
glActiveTexture(GL_TEXTURE3);
|
||||
glBindTexture(GL_TEXTURE_2D, ironAlbedoMap);
|
||||
glActiveTexture(GL_TEXTURE4);
|
||||
glBindTexture(GL_TEXTURE_2D, ironNormalMap);
|
||||
glActiveTexture(GL_TEXTURE5);
|
||||
glBindTexture(GL_TEXTURE_2D, ironMetallicMap);
|
||||
glActiveTexture(GL_TEXTURE6);
|
||||
glBindTexture(GL_TEXTURE_2D, ironRoughnessMap);
|
||||
glActiveTexture(GL_TEXTURE7);
|
||||
glBindTexture(GL_TEXTURE_2D, ironAOMap);
|
||||
|
||||
model = glm::mat4();
|
||||
model = glm::translate(model, glm::vec3(-5.0, 0.0, 2.0));
|
||||
glUniformMatrix4fv(glGetUniformLocation(pbrShader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
|
||||
renderSphere();
|
||||
|
||||
// gold
|
||||
glActiveTexture(GL_TEXTURE3);
|
||||
glBindTexture(GL_TEXTURE_2D, goldAlbedoMap);
|
||||
glActiveTexture(GL_TEXTURE4);
|
||||
glBindTexture(GL_TEXTURE_2D, goldNormalMap);
|
||||
glActiveTexture(GL_TEXTURE5);
|
||||
glBindTexture(GL_TEXTURE_2D, goldMetallicMap);
|
||||
glActiveTexture(GL_TEXTURE6);
|
||||
glBindTexture(GL_TEXTURE_2D, goldRoughnessMap);
|
||||
glActiveTexture(GL_TEXTURE7);
|
||||
glBindTexture(GL_TEXTURE_2D, goldAOMap);
|
||||
|
||||
model = glm::mat4();
|
||||
model = glm::translate(model, glm::vec3(-3.0, 0.0, 2.0));
|
||||
glUniformMatrix4fv(glGetUniformLocation(pbrShader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
|
||||
renderSphere();
|
||||
|
||||
// grass
|
||||
glActiveTexture(GL_TEXTURE3);
|
||||
glBindTexture(GL_TEXTURE_2D, grassAlbedoMap);
|
||||
glActiveTexture(GL_TEXTURE4);
|
||||
glBindTexture(GL_TEXTURE_2D, grassNormalMap);
|
||||
glActiveTexture(GL_TEXTURE5);
|
||||
glBindTexture(GL_TEXTURE_2D, grassMetallicMap);
|
||||
glActiveTexture(GL_TEXTURE6);
|
||||
glBindTexture(GL_TEXTURE_2D, grassRoughnessMap);
|
||||
glActiveTexture(GL_TEXTURE7);
|
||||
glBindTexture(GL_TEXTURE_2D, grassAOMap);
|
||||
|
||||
model = glm::mat4();
|
||||
model = glm::translate(model, glm::vec3(-1.0, 0.0, 2.0));
|
||||
glUniformMatrix4fv(glGetUniformLocation(pbrShader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
|
||||
renderSphere();
|
||||
|
||||
// plastic
|
||||
glActiveTexture(GL_TEXTURE3);
|
||||
glBindTexture(GL_TEXTURE_2D, plasticAlbedoMap);
|
||||
glActiveTexture(GL_TEXTURE4);
|
||||
glBindTexture(GL_TEXTURE_2D, plasticNormalMap);
|
||||
glActiveTexture(GL_TEXTURE5);
|
||||
glBindTexture(GL_TEXTURE_2D, plasticMetallicMap);
|
||||
glActiveTexture(GL_TEXTURE6);
|
||||
glBindTexture(GL_TEXTURE_2D, plasticRoughnessMap);
|
||||
glActiveTexture(GL_TEXTURE7);
|
||||
glBindTexture(GL_TEXTURE_2D, plasticAOMap);
|
||||
|
||||
model = glm::mat4();
|
||||
model = glm::translate(model, glm::vec3(1.0, 0.0, 2.0));
|
||||
glUniformMatrix4fv(glGetUniformLocation(pbrShader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
|
||||
renderSphere();
|
||||
|
||||
// wall
|
||||
glActiveTexture(GL_TEXTURE3);
|
||||
glBindTexture(GL_TEXTURE_2D, wallAlbedoMap);
|
||||
glActiveTexture(GL_TEXTURE4);
|
||||
glBindTexture(GL_TEXTURE_2D, wallNormalMap);
|
||||
glActiveTexture(GL_TEXTURE5);
|
||||
glBindTexture(GL_TEXTURE_2D, wallMetallicMap);
|
||||
glActiveTexture(GL_TEXTURE6);
|
||||
glBindTexture(GL_TEXTURE_2D, wallRoughnessMap);
|
||||
glActiveTexture(GL_TEXTURE7);
|
||||
glBindTexture(GL_TEXTURE_2D, wallAOMap);
|
||||
|
||||
model = glm::mat4();
|
||||
model = glm::translate(model, glm::vec3(3.0, 0.0, 2.0));
|
||||
glUniformMatrix4fv(glGetUniformLocation(pbrShader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
|
||||
renderSphere();
|
||||
|
||||
// render light source (simply re-render sphere at light positions)
|
||||
// this looks a bit off as we use the same shader, but it'll make their positions obvious and
|
||||
// keeps the codeprint small.
|
||||
for (unsigned int i = 0; i < sizeof(lightPositions) / sizeof(lightPositions[0]); ++i)
|
||||
{
|
||||
glm::vec3 newPos = lightPositions[i] + glm::vec3(sin(glfwGetTime() * 5.0) * 5.0, 0.0, 0.0);
|
||||
newPos = lightPositions[i];
|
||||
glUniform3fv(glGetUniformLocation(pbrShader.Program, ("lightPositions[" + std::to_string(i) + "]").c_str()), 1, &newPos[0]); \
|
||||
glUniform3fv(glGetUniformLocation(pbrShader.Program, ("lightColors[" + std::to_string(i) + "]").c_str()), 1, &lightColors[i][0]);
|
||||
|
||||
model = glm::mat4();
|
||||
model = glm::translate(model, newPos);
|
||||
model = glm::scale(model, glm::vec3(0.5f));
|
||||
glUniformMatrix4fv(glGetUniformLocation(pbrShader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
|
||||
renderSphere();
|
||||
}
|
||||
|
||||
// render skybox (render as last to prevent overdraw)
|
||||
backgroundShader.Use();
|
||||
|
||||
glUniformMatrix4fv(glGetUniformLocation(backgroundShader.Program, "view"), 1, GL_FALSE, glm::value_ptr(view));
|
||||
glActiveTexture(GL_TEXTURE0);
|
||||
glBindTexture(GL_TEXTURE_CUBE_MAP, envCubemap);
|
||||
//glBindTexture(GL_TEXTURE_CUBE_MAP, irradianceMap); // display irradiance map
|
||||
//glBindTexture(GL_TEXTURE_CUBE_MAP, prefilterMap); // display prefilter map
|
||||
renderCube();
|
||||
|
||||
// render BRDF map to screen
|
||||
//brdfShader.Use();
|
||||
//RenderQuad();
|
||||
|
||||
// Swap the buffers
|
||||
glfwSwapBuffers(window);
|
||||
}
|
||||
|
||||
glfwTerminate();
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
// renders (and builds at first invocation) a sphere
|
||||
unsigned int sphereVAO = 0;
|
||||
unsigned int indexCount;
|
||||
void renderSphere()
|
||||
{
|
||||
if (sphereVAO == 0)
|
||||
{
|
||||
glGenVertexArrays(1, &sphereVAO);
|
||||
|
||||
unsigned int vbo, ebo;
|
||||
glGenBuffers(1, &vbo);
|
||||
glGenBuffers(1, &ebo);
|
||||
|
||||
std::vector<glm::vec3> positions;
|
||||
std::vector<glm::vec2> uv;
|
||||
std::vector<glm::vec3> normals;
|
||||
std::vector<unsigned int> indices;
|
||||
|
||||
const unsigned int X_SEGMENTS = 64;
|
||||
const unsigned int Y_SEGMENTS = 64;
|
||||
const float PI = 3.14159265359;
|
||||
for (unsigned int y = 0; y <= Y_SEGMENTS; ++y)
|
||||
{
|
||||
for (unsigned int x = 0; x <= X_SEGMENTS; ++x)
|
||||
{
|
||||
float xSegment = (float)x / (float)X_SEGMENTS;
|
||||
float ySegment = (float)y / (float)Y_SEGMENTS;
|
||||
float xPos = std::cos(xSegment * 2.0f * PI) * std::sin(ySegment * PI);
|
||||
float yPos = std::cos(ySegment * PI);
|
||||
float zPos = std::sin(xSegment * 2.0f * PI) * std::sin(ySegment * PI);
|
||||
|
||||
positions.push_back(glm::vec3(xPos, yPos, zPos));
|
||||
uv.push_back(glm::vec2(xSegment, ySegment));
|
||||
normals.push_back(glm::vec3(xPos, yPos, zPos));
|
||||
}
|
||||
}
|
||||
|
||||
bool oddRow = false;
|
||||
for (int y = 0; y < Y_SEGMENTS; ++y)
|
||||
{
|
||||
if (!oddRow) // even rows: y == 0, y == 2; and so on
|
||||
{
|
||||
for (int x = 0; x <= X_SEGMENTS; ++x)
|
||||
{
|
||||
indices.push_back(y * (X_SEGMENTS + 1) + x);
|
||||
indices.push_back((y + 1) * (X_SEGMENTS + 1) + x);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (int x = X_SEGMENTS; x >= 0; --x)
|
||||
{
|
||||
indices.push_back((y + 1) * (X_SEGMENTS + 1) + x);
|
||||
indices.push_back(y * (X_SEGMENTS + 1) + x);
|
||||
}
|
||||
}
|
||||
oddRow = !oddRow;
|
||||
}
|
||||
indexCount = indices.size();
|
||||
|
||||
std::vector<float> data;
|
||||
for (int i = 0; i < positions.size(); ++i)
|
||||
{
|
||||
data.push_back(positions[i].x);
|
||||
data.push_back(positions[i].y);
|
||||
data.push_back(positions[i].z);
|
||||
if (uv.size() > 0)
|
||||
{
|
||||
data.push_back(uv[i].x);
|
||||
data.push_back(uv[i].y);
|
||||
}
|
||||
if (normals.size() > 0)
|
||||
{
|
||||
data.push_back(normals[i].x);
|
||||
data.push_back(normals[i].y);
|
||||
data.push_back(normals[i].z);
|
||||
}
|
||||
}
|
||||
glBindVertexArray(sphereVAO);
|
||||
glBindBuffer(GL_ARRAY_BUFFER, vbo);
|
||||
glBufferData(GL_ARRAY_BUFFER, data.size() * sizeof(float), &data[0], GL_STATIC_DRAW);
|
||||
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ebo);
|
||||
glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices.size() * sizeof(unsigned int), &indices[0], GL_STATIC_DRAW);
|
||||
float stride = (3 + 2 + 3) * sizeof(float);
|
||||
glEnableVertexAttribArray(0);
|
||||
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, stride, (GLvoid*)0);
|
||||
glEnableVertexAttribArray(1);
|
||||
glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, stride, (GLvoid*)(3 * sizeof(float)));
|
||||
glEnableVertexAttribArray(2);
|
||||
glVertexAttribPointer(2, 3, GL_FLOAT, GL_FALSE, stride, (GLvoid*)(5 * sizeof(float)));
|
||||
}
|
||||
|
||||
glBindVertexArray(sphereVAO);
|
||||
glDrawElements(GL_TRIANGLE_STRIP, indexCount, GL_UNSIGNED_INT, 0);
|
||||
}
|
||||
// RenderCube() Renders a 1x1 3D cube in NDC.
|
||||
GLuint cubeVAO = 0;
|
||||
GLuint cubeVBO = 0;
|
||||
void renderCube()
|
||||
{
|
||||
// Initialize (if necessary)
|
||||
if (cubeVAO == 0)
|
||||
{
|
||||
GLfloat vertices[] = {
|
||||
// Back face
|
||||
-1.0f, -1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, // Bottom-left
|
||||
1.0f, 1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f, // top-right
|
||||
1.0f, -1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 1.0f, 0.0f, // bottom-right
|
||||
1.0f, 1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f, // top-right
|
||||
-1.0f, -1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, // bottom-left
|
||||
-1.0f, 1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 1.0f,// top-left
|
||||
// Front face
|
||||
-1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, // bottom-left
|
||||
1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, // bottom-right
|
||||
1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, // top-right
|
||||
1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, // top-right
|
||||
-1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, // top-left
|
||||
-1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, // bottom-left
|
||||
// Left face
|
||||
-1.0f, 1.0f, 1.0f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-right
|
||||
-1.0f, 1.0f, -1.0f, -1.0f, 0.0f, 0.0f, 1.0f, 1.0f, // top-left
|
||||
-1.0f, -1.0f, -1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-left
|
||||
-1.0f, -1.0f, -1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-left
|
||||
-1.0f, -1.0f, 1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 0.0f, // bottom-right
|
||||
-1.0f, 1.0f, 1.0f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-right
|
||||
// Right face
|
||||
1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-left
|
||||
1.0f, -1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-right
|
||||
1.0f, 1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, // top-right
|
||||
1.0f, -1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-right
|
||||
1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-left
|
||||
1.0f, -1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, // bottom-left
|
||||
// Bottom face
|
||||
-1.0f, -1.0f, -1.0f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f, // top-right
|
||||
1.0f, -1.0f, -1.0f, 0.0f, -1.0f, 0.0f, 1.0f, 1.0f, // top-left
|
||||
1.0f, -1.0f, 1.0f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f,// bottom-left
|
||||
1.0f, -1.0f, 1.0f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f, // bottom-left
|
||||
-1.0f, -1.0f, 1.0f, 0.0f, -1.0f, 0.0f, 0.0f, 0.0f, // bottom-right
|
||||
-1.0f, -1.0f, -1.0f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f, // top-right
|
||||
// Top face
|
||||
-1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f,// top-left
|
||||
1.0f, 1.0f , 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, // bottom-right
|
||||
1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, // top-right
|
||||
1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, // bottom-right
|
||||
-1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f,// top-left
|
||||
-1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f // bottom-left
|
||||
};
|
||||
glGenVertexArrays(1, &cubeVAO);
|
||||
glGenBuffers(1, &cubeVBO);
|
||||
// Fill buffer
|
||||
glBindBuffer(GL_ARRAY_BUFFER, cubeVBO);
|
||||
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
|
||||
// Link vertex attributes
|
||||
glBindVertexArray(cubeVAO);
|
||||
glEnableVertexAttribArray(0);
|
||||
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)0);
|
||||
glEnableVertexAttribArray(1);
|
||||
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)(3 * sizeof(GLfloat)));
|
||||
glEnableVertexAttribArray(2);
|
||||
glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)(6 * sizeof(GLfloat)));
|
||||
glBindBuffer(GL_ARRAY_BUFFER, 0);
|
||||
glBindVertexArray(0);
|
||||
}
|
||||
// Render Cube
|
||||
glBindVertexArray(cubeVAO);
|
||||
glDrawArrays(GL_TRIANGLES, 0, 36);
|
||||
glBindVertexArray(0);
|
||||
}
|
||||
|
||||
// RenderQuad() Renders a 1x1 XY quad in NDC
|
||||
GLuint quadVAO = 0;
|
||||
GLuint quadVBO;
|
||||
void RenderQuad()
|
||||
{
|
||||
if (quadVAO == 0)
|
||||
{
|
||||
GLfloat quadVertices[] = {
|
||||
// Positions // Texture Coords
|
||||
-1.0f, 1.0f, 0.0f, 0.0f, 1.0f,
|
||||
-1.0f, -1.0f, 0.0f, 0.0f, 0.0f,
|
||||
1.0f, 1.0f, 0.0f, 1.0f, 1.0f,
|
||||
1.0f, -1.0f, 0.0f, 1.0f, 0.0f,
|
||||
};
|
||||
// Setup plane VAO
|
||||
glGenVertexArrays(1, &quadVAO);
|
||||
glGenBuffers(1, &quadVBO);
|
||||
glBindVertexArray(quadVAO);
|
||||
glBindBuffer(GL_ARRAY_BUFFER, quadVBO);
|
||||
glBufferData(GL_ARRAY_BUFFER, sizeof(quadVertices), &quadVertices, GL_STATIC_DRAW);
|
||||
glEnableVertexAttribArray(0);
|
||||
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 5 * sizeof(GLfloat), (GLvoid*)0);
|
||||
glEnableVertexAttribArray(1);
|
||||
glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 5 * sizeof(GLfloat), (GLvoid*)(3 * sizeof(GLfloat)));
|
||||
}
|
||||
glBindVertexArray(quadVAO);
|
||||
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
|
||||
glBindVertexArray(0);
|
||||
}
|
||||
|
||||
// This function loads a texture from file. Note: texture loading functions like these are usually
|
||||
// managed by a 'Resource Manager' that manages all resources (like textures, models, audio).
|
||||
// For learning purposes we'll just define it as a utility function.
|
||||
unsigned int loadTexture(char const * path)
|
||||
{
|
||||
//Generate texture ID and load texture data
|
||||
unsigned int textureID;
|
||||
glGenTextures(1, &textureID);
|
||||
int width, height, nrComponents;
|
||||
unsigned char *data = stbi_load(path, &width, &height, &nrComponents, 0);
|
||||
if (data)
|
||||
{
|
||||
GLenum format;
|
||||
if (nrComponents == 1)
|
||||
format = GL_RED;
|
||||
else if (nrComponents == 3)
|
||||
format = GL_RGB;
|
||||
else if (nrComponents == 4)
|
||||
format = GL_RGBA;
|
||||
|
||||
glBindTexture(GL_TEXTURE_2D, textureID);
|
||||
glTexImage2D(GL_TEXTURE_2D, 0, format, width, height, 0, format, GL_UNSIGNED_BYTE, data);
|
||||
glGenerateMipmap(GL_TEXTURE_2D);
|
||||
|
||||
// Parameters
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
|
||||
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
|
||||
|
||||
stbi_image_free(data);
|
||||
}
|
||||
else
|
||||
{
|
||||
std::cout << "Texture failed to load at path: " << path << std::endl;
|
||||
stbi_image_free(data);
|
||||
}
|
||||
|
||||
return textureID;
|
||||
}
|
||||
|
||||
#pragma region "User input"
|
||||
|
||||
bool keys[1024];
|
||||
bool keysPressed[1024];
|
||||
// Moves/alters the camera positions based on user input
|
||||
void Do_Movement()
|
||||
{
|
||||
// Camera controls
|
||||
if (keys[GLFW_KEY_W])
|
||||
camera.ProcessKeyboard(FORWARD, deltaTime);
|
||||
if (keys[GLFW_KEY_S])
|
||||
camera.ProcessKeyboard(BACKWARD, deltaTime);
|
||||
if (keys[GLFW_KEY_A])
|
||||
camera.ProcessKeyboard(LEFT, deltaTime);
|
||||
if (keys[GLFW_KEY_D])
|
||||
camera.ProcessKeyboard(RIGHT, deltaTime);
|
||||
}
|
||||
|
||||
// Is called whenever a key is pressed/released via GLFW
|
||||
void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode)
|
||||
{
|
||||
if (key == GLFW_KEY_ESCAPE && action == GLFW_PRESS)
|
||||
glfwSetWindowShouldClose(window, GL_TRUE);
|
||||
|
||||
if (key >= 0 && key <= 1024)
|
||||
{
|
||||
if (action == GLFW_PRESS)
|
||||
keys[key] = true;
|
||||
else if (action == GLFW_RELEASE)
|
||||
{
|
||||
keys[key] = false;
|
||||
keysPressed[key] = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
GLfloat lastX = 400, lastY = 300;
|
||||
bool firstMouse = true;
|
||||
// Moves/alters the camera positions based on user input
|
||||
void mouse_callback(GLFWwindow* window, double xpos, double ypos)
|
||||
{
|
||||
if (firstMouse)
|
||||
{
|
||||
lastX = xpos;
|
||||
lastY = ypos;
|
||||
firstMouse = false;
|
||||
}
|
||||
|
||||
GLfloat xoffset = xpos - lastX;
|
||||
GLfloat yoffset = lastY - ypos;
|
||||
|
||||
lastX = xpos;
|
||||
lastY = ypos;
|
||||
|
||||
camera.ProcessMouseMovement(xoffset, yoffset);
|
||||
}
|
||||
|
||||
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
|
||||
{
|
||||
camera.ProcessMouseScroll(yoffset);
|
||||
}
|
||||
|
||||
#pragma endregion
|
||||