PBR IBL Specular tutorial code.

This commit is contained in:
Joey de Vries
2017-03-31 22:34:26 +02:00
parent 6a41899478
commit d2a4a1e655
35 changed files with 2274 additions and 1 deletions

View File

@@ -117,7 +117,8 @@ set(6.pbr
1.2.lighting_textured
2.1.1.ibl_irradiance_conversion
2.1.2.ibl_irradiance
# 2.2.ibl_specular
2.2.1.ibl_specular
2.2.2.ibl_specular_textured
)
set(7.in_practice

Binary file not shown.

After

Width:  |  Height:  |  Size: 19 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.8 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 7.7 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 26 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.8 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.7 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.8 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 32 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 10 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.2 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.9 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.6 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 23 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.4 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.5 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.1 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 427 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.1 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.6 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.5 MiB

View File

@@ -0,0 +1,18 @@
#version 330 core
out vec4 FragColor;
in vec3 WorldPos;
uniform samplerCube environmentMap;
uniform float lod;
void main()
{
// vec3 envColor = textureLod(environmentMap, WorldPos, 1.0).rgb;
vec3 envColor = textureLod(environmentMap, WorldPos, lod).rgb;
// HDR tonemap and gamma correct
envColor = envColor / (envColor + vec3(1.0));
envColor = pow(envColor, vec3(1.0/2.2));
FragColor = vec4(envColor, 1.0);
}

View File

@@ -0,0 +1,17 @@
#version 330 core
layout (location = 0) in vec3 pos;
uniform mat4 projection;
uniform mat4 view;
out vec3 WorldPos;
void main()
{
WorldPos = pos;
mat4 rotView = mat4(mat3(view));
vec4 clipPos = projection * rotView * vec4(WorldPos, 1.0);
gl_Position = clipPos.xyww;
}

View File

@@ -0,0 +1,113 @@
#version 330 core
out vec2 FragColor;
in vec2 TexCoords;
const float PI = 3.14159265359f;
// ----------------------------------------------------------------------------
// http://holger.dammertz.org/stuff/notes_HammersleyOnHemisphere.html
// efficient VanDerCorpus calculation.
float RadicalInverse_VdC(uint bits)
{
bits = (bits << 16u) | (bits >> 16u);
bits = ((bits & 0x55555555u) << 1u) | ((bits & 0xAAAAAAAAu) >> 1u);
bits = ((bits & 0x33333333u) << 2u) | ((bits & 0xCCCCCCCCu) >> 2u);
bits = ((bits & 0x0F0F0F0Fu) << 4u) | ((bits & 0xF0F0F0F0u) >> 4u);
bits = ((bits & 0x00FF00FFu) << 8u) | ((bits & 0xFF00FF00u) >> 8u);
return float(bits) * 2.3283064365386963e-10; // / 0x100000000
}
// ----------------------------------------------------------------------------
vec2 Hammersley(uint i, uint N)
{
return vec2(float(i)/float(N), RadicalInverse_VdC(i));
}
// ----------------------------------------------------------------------------
vec3 ImportanceSampleGGX(vec2 Xi, vec3 N, float roughness)
{
float a = roughness*roughness;
float phi = 2.0 * PI * Xi.x;
float cosTheta = sqrt((1.0 - Xi.y) / (1.0 + (a*a - 1.0) * Xi.y));
float sinTheta = sqrt(1.0 - cosTheta*cosTheta);
// NOTE(Joey): from spherical coordinates to cartesian coordinates - halfway vector
vec3 H;
H.x = cos(phi) * sinTheta;
H.y = sin(phi) * sinTheta;
H.z = cosTheta;
// NOTE(Joey): from tangent-space H vector to world-space sample vector
vec3 up = abs(N.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(1.0, 0.0, 0.0);
vec3 tangent = normalize(cross(up, N));
vec3 bitangent = cross(N, tangent);
vec3 sampleVec = tangent * H.x + bitangent * H.y + N * H.z;
return normalize(sampleVec);
}
// ----------------------------------------------------------------------------
float GeometrySchlickGGX(float NdotV, float roughness)
{
// note that we use a different k for IBL
float a = roughness;
float k = (a * a) / 2.0;
float nom = NdotV;
float denom = NdotV * (1.0 - k) + k;
return nom / denom;
}
// ----------------------------------------------------------------------------
float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness)
{
float NdotV = max(dot(N, V), 0.0);
float NdotL = max(dot(N, L), 0.0);
float ggx2 = GeometrySchlickGGX(NdotV, roughness);
float ggx1 = GeometrySchlickGGX(NdotL, roughness);
return ggx1 * ggx2;
}
// ----------------------------------------------------------------------------
vec2 IntegrateBRDF(float roughness, float NdotV)
{
vec3 V;
V.x = sqrt(1.0 - NdotV*NdotV);
V.y = 0.0;
V.z = NdotV;
float A = 0.0;
float B = 0.0;
vec3 N = vec3(0.0, 0.0, 1.0);
const uint SAMPLE_COUNT = 1024u;
for(uint i = 0u; i < SAMPLE_COUNT; ++i)
{
// NOTE(Joey): generates a sample vector that's biased towards the
// preferred alignment direction (importance sampling).
vec2 Xi = Hammersley(i, SAMPLE_COUNT);
vec3 H = ImportanceSampleGGX(Xi, N, roughness);
vec3 L = normalize(2.0 * dot(V, H) * H - V);
float NdotL = max(L.z, 0.0);
float NdotH = max(H.z, 0.0);
float VdotH = max(dot(V, H), 0.0);
if(NdotL > 0.0)
{
float G = GeometrySmith(N, V, L, roughness);
float G_Vis = (G * VdotH) / (NdotH * NdotV);
float Fc = pow(1.0 - VdotH, 5.0);
A += (1.0 - Fc) * G_Vis;
B += Fc * G_Vis;
}
}
A /= float(SAMPLE_COUNT);
B /= float(SAMPLE_COUNT);
return vec2(A, B);
}
// ----------------------------------------------------------------------------
void main()
{
vec2 integratedBRDF = IntegrateBRDF(TexCoords.y, TexCoords.x);
FragColor = integratedBRDF;
}

View File

@@ -0,0 +1,11 @@
#version 330 core
layout (location = 0) in vec3 pos;
layout (location = 1) in vec2 texCoords;
out vec2 TexCoords;
void main()
{
TexCoords = texCoords;
gl_Position = vec4(pos, 1.0);
}

View File

@@ -0,0 +1,14 @@
#version 330 core
layout (location = 0) in vec3 pos;
out vec3 WorldPos;
uniform mat4 projection;
uniform mat4 view;
void main()
{
WorldPos = pos;
gl_Position = projection * view * vec4(WorldPos, 1.0);
}

View File

@@ -0,0 +1,22 @@
#version 330 core
out vec4 FragColor;
in vec3 WorldPos;
uniform sampler2D equirectangularMap;
const vec2 invAtan = vec2(0.1591, 0.3183);
vec2 SampleSphericalMap(vec3 v)
{
vec2 uv = vec2(atan(v.z, v.x), asin(v.y));
uv *= invAtan;
uv += 0.5;
return uv;
}
void main()
{
vec2 uv = SampleSphericalMap(normalize(WorldPos));
vec3 color = texture(equirectangularMap, uv).rgb;
FragColor = vec4(color, 1.0);
}

View File

@@ -0,0 +1,43 @@
#version 330 core
out vec4 FragColor;
in vec3 WorldPos;
uniform samplerCube environmentMap;
const float PI = 3.14159265359f;
void main()
{
// NOTE(Joey): the world vector acts as the normal of a tangent surface
// from the origin, aligned to WorldPos. Given this normal, calculate all
// incoming radiance of the environment. The result of this radiance
// is the radiance of light coming from -Normal direction, which is what
// we use in the PBR shader to sample irradiance.
vec3 N = normalize(WorldPos);
vec3 irradiance = vec3(0.0);
// NOTE(Joey): tangent space calculation from origin point
vec3 up = vec3(0.0, 1.0, 0.0);
vec3 right = cross(up, N);
up = cross(N, right);
float sampleDelta = 0.025f;
float nrSamples = 0.0f;
for(float phi = 0.0; phi < 2.0 * PI; phi += sampleDelta)
{
for(float theta = 0.0; theta < 0.5 * PI; theta += sampleDelta)
{
// spherical to cartesian (in tangent space)
vec3 tangentSample = vec3(sin(theta) * cos(phi), sin(theta) * sin(phi), cos(theta));
// tangent space to world
vec3 sampleVec = tangentSample.x * right + tangentSample.y * up + tangentSample.z * N;
irradiance += texture(environmentMap, sampleVec).rgb * cos(theta) * sin(theta);
nrSamples++;
}
}
irradiance = PI * irradiance * (1.0 / float(nrSamples));
FragColor = vec4(irradiance, 1.0);
}

View File

@@ -0,0 +1,147 @@
#version 330 core
out vec4 FragColor;
in vec2 TexCoords;
in vec3 WorldPos;
in vec3 Normal;
in mat3 TBN;
// material parameters
uniform vec3 albedo;
uniform float metallic;
uniform float roughness;
uniform float ao;
// IBL
uniform samplerCube irradianceMap;
uniform samplerCube prefilterMap;
uniform sampler2D brdfLUT;
// lights
uniform vec3 lightPositions[4];
uniform vec3 lightColors[4];
uniform vec3 camPos;
const float PI = 3.14159265359;
// ----------------------------------------------------------------------------
float DistributionGGX(vec3 N, vec3 H, float roughness)
{
float a = roughness*roughness;
float a2 = a*a;
float NdotH = max(dot(N, H), 0.0);
float NdotH2 = NdotH*NdotH;
float nom = a2;
float denom = (NdotH2 * (a2 - 1.0) + 1.0);
denom = PI * denom * denom;
return nom / denom;
}
// ----------------------------------------------------------------------------
float GeometrySchlickGGX(float NdotV, float roughness)
{
float r = (roughness + 1.0);
float k = (r*r) / 8.0;
float nom = NdotV;
float denom = NdotV * (1.0 - k) + k;
return nom / denom;
}
// ----------------------------------------------------------------------------
float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness)
{
float NdotV = max(dot(N, V), 0.0);
float NdotL = max(dot(N, L), 0.0);
float ggx2 = GeometrySchlickGGX(NdotV, roughness);
float ggx1 = GeometrySchlickGGX(NdotL, roughness);
return ggx1 * ggx2;
}
// ----------------------------------------------------------------------------
vec3 fresnelSchlick(float cosTheta, vec3 F0)
{
return F0 + (1.0 - F0) * pow(1.0 - cosTheta, 5.0);
}
// ----------------------------------------------------------------------------
vec3 fresnelSchlickRoughness(float cosTheta, vec3 F0, float roughness)
{
return F0 + (max(vec3(1.0 - roughness), F0) - F0) * pow(1.0 - cosTheta, 5.0);
}
// ----------------------------------------------------------------------------
void main()
{
vec3 N = Normal;
vec3 V = normalize(camPos - WorldPos);
vec3 R = reflect(-V, N);
// calculate reflectance at normal incidence; if dia-electric (like plastic) use F0
// of 0.04 and if it's a metal, use their albedo color as F0 (metallic workflow)
vec3 F0 = vec3(0.04);
F0 = mix(F0, albedo, metallic);
// reflectance equation
vec3 Lo = vec3(0.0);
for(int i = 0; i < 4; ++i)
{
// calculate per-light radiance
vec3 L = normalize(lightPositions[i] - WorldPos);
vec3 H = normalize(V + L);
float distance = length(lightPositions[i] - WorldPos);
float attenuation = 1.0 / (distance * distance);
vec3 radiance = lightColors[i] * attenuation;
// Cook-Torrance BRDF
float NDF = DistributionGGX(N, H, roughness);
float G = GeometrySmith(N, V, L, roughness);
vec3 F = fresnelSchlick(max(dot(H, V), 0.0), F0);
vec3 nominator = NDF * G * F;
float denominator = 4 * max(dot(N, V), 0.0) * max(dot(N, L), 0.0) + 0.001; // 0.001 to prevent divide by zero.
vec3 brdf = nominator / denominator;
// kS is equal to Fresnel
vec3 kS = F;
// for energy conservation, the diffuse and specular light can't
// be above 1.0 (unless the surface emits light); to preserve this
// relationship the diffuse component (kD) should equal 1.0 - kS.
vec3 kD = vec3(1.0) - kS;
// multiply kD by the inverse metalness such that only non-metals
// have diffuse lighting, or a linear blend if partly metal (pure metals
// have no diffuse light).
kD *= 1.0 - metallic;
// scale light by NdotL
float NdotL = max(dot(N, L), 0.0);
// add to outgoing radiance Lo
Lo += (kD * albedo / PI + brdf) * radiance * NdotL; // note that we already multiplied the BRDF by the Fresnel (kS) so we won't multiply by kS again
}
// ambient lighting (we now use IBL as the ambient term)
vec3 F = fresnelSchlickRoughness(max(dot(N, V), 0.0), F0, roughness);
vec3 kS = F;
vec3 kD = 1.0 - kS;
kD *= 1.0 - metallic;
vec3 irradiance = texture(irradianceMap, N).rgb;
vec3 diffuse = irradiance * albedo;
// sample both the pre-filter map and the BRDF lut and combine them together as per the Split-Sum approximation to get the IBL specular part.
const float MAX_REFLECTION_LOD = 5.0;
vec3 prefilteredColor = textureLod(prefilterMap, R, roughness * MAX_REFLECTION_LOD).rgb;
vec2 brdf = texture(brdfLUT, vec2(max(dot(N, V), 0.0), roughness)).rg;
vec3 specular = prefilteredColor * (F * brdf.x + brdf.y);
vec3 ambient = (kD * diffuse + specular) * ao;
vec3 color = ambient + Lo;
// HDR tonemapping
color = color / (color + vec3(1.0));
// gamma correct
color = pow(color, vec3(1.0/2.2));
FragColor = vec4(color , 1.0);
}

View File

@@ -0,0 +1,21 @@
#version 330 core
layout (location = 0) in vec3 pos;
layout (location = 1) in vec2 texCoords;
layout (location = 2) in vec3 normal;
out vec2 TexCoords;
out vec3 WorldPos;
out vec3 Normal;
uniform mat4 projection;
uniform mat4 view;
uniform mat4 model;
void main()
{
TexCoords = texCoords;
WorldPos = vec3(model * vec4(pos, 1.0f));
Normal = mat3(model) * normal;
gl_Position = projection * view * vec4(WorldPos, 1.0);
}

View File

@@ -0,0 +1,106 @@
#version 330 core
out vec4 FragColor;
in vec3 WorldPos;
uniform samplerCube environmentMap;
uniform float roughness;
const float PI = 3.14159265359f;
// ----------------------------------------------------------------------------
float DistributionGGX(vec3 N, vec3 H, float roughness)
{
float a = roughness*roughness;
float a2 = a*a;
float NdotH = max(dot(N, H), 0.0);
float NdotH2 = NdotH*NdotH;
float nom = a2;
float denom = (NdotH2 * (a2 - 1.0) + 1.0);
denom = PI * denom * denom;
return nom / denom;
}
// ----------------------------------------------------------------------------
// http://holger.dammertz.org/stuff/notes_HammersleyOnHemisphere.html
// efficient VanDerCorpus calculation.
float RadicalInverse_VdC(uint bits)
{
bits = (bits << 16u) | (bits >> 16u);
bits = ((bits & 0x55555555u) << 1u) | ((bits & 0xAAAAAAAAu) >> 1u);
bits = ((bits & 0x33333333u) << 2u) | ((bits & 0xCCCCCCCCu) >> 2u);
bits = ((bits & 0x0F0F0F0Fu) << 4u) | ((bits & 0xF0F0F0F0u) >> 4u);
bits = ((bits & 0x00FF00FFu) << 8u) | ((bits & 0xFF00FF00u) >> 8u);
return float(bits) * 2.3283064365386963e-10; // / 0x100000000
}
// ----------------------------------------------------------------------------
vec2 Hammersley(uint i, uint N)
{
return vec2(float(i)/float(N), RadicalInverse_VdC(i));
}
// ----------------------------------------------------------------------------
vec3 ImportanceSampleGGX(vec2 Xi, vec3 N, float roughness)
{
float a = roughness*roughness;
float phi = 2.0 * PI * Xi.x;
float cosTheta = sqrt((1.0 - Xi.y) / (1.0 + (a*a - 1.0) * Xi.y));
float sinTheta = sqrt(1.0 - cosTheta*cosTheta);
// from spherical coordinates to cartesian coordinates - halfway vector
vec3 H;
H.x = cos(phi) * sinTheta;
H.y = sin(phi) * sinTheta;
H.z = cosTheta;
// from tangent-space H vector to world-space sample vector
vec3 up = abs(N.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(1.0, 0.0, 0.0);
vec3 tangent = normalize(cross(up, N));
vec3 bitangent = cross(N, tangent);
vec3 sampleVec = tangent * H.x + bitangent * H.y + N * H.z;
return normalize(sampleVec);
}
// ----------------------------------------------------------------------------
void main()
{
vec3 N = normalize(WorldPos);
// make the simplyfying assumption that V equals R equals the normal
vec3 R = N;
vec3 V = R;
const uint SAMPLE_COUNT = 1024u;
vec3 prefilteredColor = vec3(0.0);
float totalWeight = 0.0;
for(uint i = 0u; i < SAMPLE_COUNT; ++i)
{
// generates a sample vector that's biased towards the preferred alignment direction (importance sampling).
vec2 Xi = Hammersley(i, SAMPLE_COUNT);
vec3 H = ImportanceSampleGGX(Xi, N, roughness);
vec3 L = normalize(2.0 * dot(V, H) * H - V);
float NdotL = max(dot(N, L), 0.0);
if(NdotL > 0.0)
{
// sample from the environment's mip level based on roughness/pdf
float D = DistributionGGX(N, H, roughness);
float NdotH = max(dot(N, H), 0.0);
float HdotV = max(dot(H, V), 0.0);
float pdf = D * NdotH / (4.0 * HdotV) + 0.0001;
float resolution = 512.0; // resolution of source cubemap (per face)
float saTexel = 4.0 * PI / (6.0 * resolution * resolution);
float saSample = 1.0 / (float(SAMPLE_COUNT) * pdf + 0.0001);
float mipLevel = roughness == 0.0 ? 0.0 : 0.5 * log2(saSample / saTexel);
prefilteredColor += textureLod(environmentMap, L, mipLevel).rgb * NdotL;
totalWeight += NdotL;
}
}
prefilteredColor = prefilteredColor / totalWeight;
FragColor = vec4(prefilteredColor, 1.0);
}

View File

@@ -0,0 +1,727 @@
// Std. Includes
#include <string>
// GLEW
#define GLEW_STATIC
#include <GL/glew.h>
// GLFW
#include <GLFW/glfw3.h>
// GL includes
#include <learnopengl/shader.h>
#include <learnopengl/camera.h>
// GLM Mathemtics
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>
// Other Libs
#include <learnopengl/filesystem.h>
#include "stb_image.h"
// Properties
const GLuint SCR_WIDTH = 1280, SCR_HEIGHT = 720;
// Function prototypes
void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode);
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);
void mouse_callback(GLFWwindow* window, double xpos, double ypos);
void Do_Movement();
GLuint loadTexture(GLchar const * path);
void renderSphere();
void renderCube();
void RenderQuad();
// camera
Camera camera(glm::vec3(0.0f, 0.0f, 3.0f));
// timing
GLfloat deltaTime = 0.0f;
GLfloat lastFrame = 0.0f;
// The MAIN function, from here we start the application and run the Game loop
int main()
{
// GLFW Init
// ---------
glfwInit();
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
glfwWindowHint(GLFW_SAMPLES, 4);
glfwWindowHint(GLFW_RESIZABLE, GL_FALSE);
GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", nullptr, nullptr); // Windowed
glfwMakeContextCurrent(window);
// GLFW config
// -----------
glfwSetKeyCallback(window, key_callback);
glfwSetCursorPosCallback(window, mouse_callback);
glfwSetScrollCallback(window, scroll_callback);
glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);
// Initialize GLEW to setup the OpenGL Function pointers
// -----------------------------------------------------
glewExperimental = GL_TRUE;
glewInit();
glGetError();
// Setup OpenGL state
// ------------------
glEnable(GL_DEPTH_TEST);
// set depth function to less than AND equal for skybox depth trick.
glDepthFunc(GL_LEQUAL);
// enable seamless cubemap sampling for lower mip levels in the pre-filter map.
glEnable(GL_TEXTURE_CUBE_MAP_SEAMLESS);
// load and initialize shaders
// ---------------------------
Shader pbrShader("2.2.1.pbr.vs", "2.2.1.pbr.frag");
Shader equirectangularToCubemapShader("2.2.1.cubemap.vs", "2.2.1.equirectangular_to_cubemap.frag");
Shader irradianceShader("2.2.1.cubemap.vs", "2.2.1.irradiance_convolution.frag");
Shader prefilterShader("2.2.1.cubemap.vs", "2.2.1.prefilter.frag");
Shader brdfShader("2.2.1.brdf.vs", "2.2.1.brdf.frag");
Shader backgroundShader("2.2.1.background.vs", "2.2.1.background.frag");
pbrShader.Use();
glUniform1i(glGetUniformLocation(pbrShader.Program, "irradianceMap"), 0);
glUniform1i(glGetUniformLocation(pbrShader.Program, "prefilterMap"), 1);
glUniform1i(glGetUniformLocation(pbrShader.Program, "brdfLUT"), 2);
glUniform3f(glGetUniformLocation(pbrShader.Program, "albedo"), 0.5f, 0.0f, 0.0f);
glUniform1f(glGetUniformLocation(pbrShader.Program, "ao"), 1.0f);
backgroundShader.Use();
glUniform1i(glGetUniformLocation(backgroundShader.Program, "environmentMap"), 0);
// lights
// ------
glm::vec3 lightPositions[] = {
glm::vec3(-10.0f, 10.0f, 10.0f),
glm::vec3(10.0f, 10.0f, 10.0f),
glm::vec3(-10.0f, -10.0f, 10.0f),
glm::vec3(10.0f, -10.0f, 10.0f),
};
glm::vec3 lightColors[] = {
glm::vec3(300.0f, 300.0f, 300.0f),
glm::vec3(300.0f, 300.0f, 300.0f),
glm::vec3(300.0f, 300.0f, 300.0f),
glm::vec3(300.0f, 300.0f, 300.0f)
};
int nrRows = 7;
int nrColumns = 7;
float spacing = 2.5;
// pbr: setup framebuffer
// ----------------------
unsigned int captureFBO;
unsigned int captureRBO;
glGenFramebuffers(1, &captureFBO);
glGenRenderbuffers(1, &captureRBO);
glBindFramebuffer(GL_FRAMEBUFFER, captureFBO);
glBindRenderbuffer(GL_RENDERBUFFER, captureRBO);
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, 512, 512);
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, captureRBO);
// pbr: load the HDR environment map
// ---------------------------------
stbi_set_flip_vertically_on_load(true);
int width, height, nrComponents;
float *data = stbi_loadf(FileSystem::getPath("resources/textures/hdr/newport_loft.hdr").c_str(), &width, &height, &nrComponents, 0);
unsigned int hdrTexture;
if (data)
{
glGenTextures(1, &hdrTexture);
glBindTexture(GL_TEXTURE_2D, hdrTexture);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB16F, width, height, 0, GL_RGB, GL_FLOAT, data); // note how we specify the texture's data value to be float
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
stbi_image_free(data);
}
else
{
std::cout << "Failed to load HDR image." << std::endl;
}
// pbr: setup cubemap to render to and attach to framebuffer
// ---------------------------------------------------------
unsigned int envCubemap;
glGenTextures(1, &envCubemap);
glBindTexture(GL_TEXTURE_CUBE_MAP, envCubemap);
for (unsigned int i = 0; i < 6; ++i)
{
glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, GL_RGB16F, 512, 512, 0, GL_RGB, GL_FLOAT, nullptr);
}
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); // enable pre-filter mipmap sampling (combatting visible dots artifact)
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
// pbr: set up projection and view matrices for capturing data onto the 6 cubemap face directions
// ----------------------------------------------------------------------------------------------
glm::mat4 captureProjection = glm::perspective(glm::radians(90.0f), 1.0f, 0.1f, 10.0f);
glm::mat4 captureViews[] =
{
glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(1.0f, 0.0f, 0.0f), glm::vec3(0.0f, -1.0f, 0.0f)),
glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(-1.0f, 0.0f, 0.0f), glm::vec3(0.0f, -1.0f, 0.0f)),
glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f, 1.0f, 0.0f), glm::vec3(0.0f, 0.0f, 1.0f)),
glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f, -1.0f, 0.0f), glm::vec3(0.0f, 0.0f, -1.0f)),
glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f, 0.0f, 1.0f), glm::vec3(0.0f, -1.0f, 0.0f)),
glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f, 0.0f, -1.0f), glm::vec3(0.0f, -1.0f, 0.0f))
};
// pbr: convert HDR equirectangular environment map to cubemap equivalent
// ----------------------------------------------------------------------
equirectangularToCubemapShader.Use();
glUniform1i(glGetUniformLocation(equirectangularToCubemapShader.Program, "equirectangularMap"), 0);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, hdrTexture);
glUniformMatrix4fv(glGetUniformLocation(equirectangularToCubemapShader.Program, "projection"), 1, GL_FALSE, glm::value_ptr(captureProjection));
glViewport(0, 0, 512, 512); // don't forget to configure the viewport to the capture dimensions.
glBindFramebuffer(GL_FRAMEBUFFER, captureFBO);
for (unsigned int i = 0; i < 6; ++i)
{
glUniformMatrix4fv(glGetUniformLocation(equirectangularToCubemapShader.Program, "view"), 1, GL_FALSE, glm::value_ptr(captureViews[i]));
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, envCubemap, 0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
renderCube();
}
glBindFramebuffer(GL_FRAMEBUFFER, 0);
// then let OpenGL generate mipmaps from first mip face (combatting visible dots artifact)
glBindTexture(GL_TEXTURE_CUBE_MAP, envCubemap);
glGenerateMipmap(GL_TEXTURE_CUBE_MAP);
// pbr: create an irradiance cubemap, and re-scale capture FBO to irradiance scale.
// --------------------------------------------------------------------------------
unsigned int irradianceMap;
glGenTextures(1, &irradianceMap);
glBindTexture(GL_TEXTURE_CUBE_MAP, irradianceMap);
for (unsigned int i = 0; i < 6; ++i)
{
glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, GL_RGB32F, 32, 32, 0, GL_RGB, GL_FLOAT, nullptr);
}
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glBindFramebuffer(GL_FRAMEBUFFER, captureFBO);
glBindRenderbuffer(GL_RENDERBUFFER, captureRBO);
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, 32, 32);
// pbr: solve diffuse integral by convolution to create an irradiance (cube)map.
// -----------------------------------------------------------------------------
irradianceShader.Use();
glUniform1i(glGetUniformLocation(irradianceShader.Program, "environmentMap"), 0);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_CUBE_MAP, envCubemap);
glUniformMatrix4fv(glGetUniformLocation(irradianceShader.Program, "projection"), 1, GL_FALSE, glm::value_ptr(captureProjection));
glViewport(0, 0, 32, 32); // don't forget to configure the viewport to the capture dimensions.
glBindFramebuffer(GL_FRAMEBUFFER, captureFBO);
for (unsigned int i = 0; i < 6; ++i)
{
glUniformMatrix4fv(glGetUniformLocation(irradianceShader.Program, "view"), 1, GL_FALSE, glm::value_ptr(captureViews[i]));
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, irradianceMap, 0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
renderCube();
}
glBindFramebuffer(GL_FRAMEBUFFER, 0);
// pbr: create a pre-filter cubemap, and re-scale capture FBO to pre-filter scale.
// --------------------------------------------------------------------------------
unsigned int prefilterMap;
glGenTextures(1, &prefilterMap);
glBindTexture(GL_TEXTURE_CUBE_MAP, prefilterMap);
for (unsigned int i = 0; i < 6; ++i)
{
glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, GL_RGB16F, 128, 128, 0, GL_RGB, GL_FLOAT, nullptr);
}
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); // be sure to set minifcation filter to mip_linear
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
// generate mipmaps for the cubemap so OpenGL automatically allocates the required memory.
glGenerateMipmap(GL_TEXTURE_CUBE_MAP);
// pbr: run a quasi monte-carlo simulation on the environment lighting to create a prefilter (cube)map.
// ----------------------------------------------------------------------------------------------------
prefilterShader.Use();
glUniform1i(glGetUniformLocation(prefilterShader.Program, "environmentMap"), 0);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_CUBE_MAP, envCubemap);
glUniformMatrix4fv(glGetUniformLocation(prefilterShader.Program, "projection"), 1, GL_FALSE, glm::value_ptr(captureProjection));
glBindFramebuffer(GL_FRAMEBUFFER, captureFBO);
unsigned int maxMipLevels = 5;
for (unsigned int mip = 0; mip < maxMipLevels; ++mip)
{
// reisze framebuffer according to mip-level size.
unsigned int mipWidth = 128 * std::pow(0.5, mip);
unsigned int mipHeight = 128 * std::pow(0.5, mip);
glBindRenderbuffer(GL_RENDERBUFFER, captureRBO);
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, mipWidth, mipHeight);
glViewport(0, 0, mipWidth, mipHeight);
float roughness = (float)mip / (float)(maxMipLevels - 1);
glUniform1f(glGetUniformLocation(prefilterShader.Program, "roughness"), roughness);
for (unsigned int i = 0; i < 6; ++i)
{
glUniformMatrix4fv(glGetUniformLocation(prefilterShader.Program, "view"), 1, GL_FALSE, glm::value_ptr(captureViews[i]));
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, prefilterMap, mip);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
renderCube();
}
}
glBindFramebuffer(GL_FRAMEBUFFER, 0);
// pbr: generate a 2D LUT from the BRDF equations used.
// ----------------------------------------------------
unsigned int brdfLUTTexture;
glGenTextures(1, &brdfLUTTexture);
// pre-allocate enough memory for the LUT texture.
glBindTexture(GL_TEXTURE_2D, brdfLUTTexture);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RG16F, 512, 512, 0, GL_RG, GL_FLOAT, 0);
// be sure to set wrapping mode to GL_CLAMP_TO_EDGE
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
// then re-configure capture framebuffer object and render screen-space quad with BRDF shader.
glBindFramebuffer(GL_FRAMEBUFFER, captureFBO);
glBindRenderbuffer(GL_RENDERBUFFER, captureRBO);
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, 512, 512);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, brdfLUTTexture, 0);
glViewport(0, 0, 512, 512);
brdfShader.Use();
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
RenderQuad();
glBindFramebuffer(GL_FRAMEBUFFER, 0);
// initialize static shader uniforms before rendering
// --------------------------------------------------
glm::mat4 projection = glm::perspective(camera.Zoom, (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f);
pbrShader.Use();
glUniformMatrix4fv(glGetUniformLocation(pbrShader.Program, "projection"), 1, GL_FALSE, glm::value_ptr(projection));
backgroundShader.Use();
glUniformMatrix4fv(glGetUniformLocation(backgroundShader.Program, "projection"), 1, GL_FALSE, glm::value_ptr(projection));
// then before rendering, configure the viewport to the actual screen dimensions
glViewport(0, 0, SCR_WIDTH, SCR_HEIGHT);
// Game loop
while (!glfwWindowShouldClose(window))
{
// set frame time
GLfloat currentFrame = glfwGetTime();
deltaTime = currentFrame - lastFrame;
lastFrame = currentFrame;
// check and call events
glfwPollEvents();
Do_Movement();
// clear the colorbuffer
glClearColor(0.1f, 0.1f, 0.1f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// render scene, supplying the convoluted irradiance map to the final shader.
// ------------------------------------------------------------------------------------------
pbrShader.Use();
glm::mat4 view = camera.GetViewMatrix();
glUniformMatrix4fv(glGetUniformLocation(pbrShader.Program, "view"), 1, GL_FALSE, glm::value_ptr(view));
glUniform3fv(glGetUniformLocation(pbrShader.Program, "camPos"), 1, &camera.Position[0]);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_CUBE_MAP, irradianceMap);
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_CUBE_MAP, prefilterMap);
glActiveTexture(GL_TEXTURE2);
glBindTexture(GL_TEXTURE_2D, brdfLUTTexture);
// render rows*column number of spheres with material properties defined by textures (they all have the same material properties)
glm::mat4 model;
for (int row = 0; row < nrRows; ++row)
{
glUniform1f(glGetUniformLocation(pbrShader.Program, "metallic"), (float)row / (float)nrRows);
for (int col = 0; col < nrColumns; ++col)
{
// we clamp the roughness to 0.025 - 1.0 as perfectly smooth surfaces (roughness of 0.0) tend to look a bit off
// on direct lighting.
glUniform1f(glGetUniformLocation(pbrShader.Program, "roughness"), glm::clamp((float)col / (float)nrColumns, 0.05f, 1.0f));
model = glm::mat4();
model = glm::translate(model, glm::vec3(
(float)(col - (nrColumns / 2)) * spacing,
(float)(row - (nrRows / 2)) * spacing,
-2.0f
));
glUniformMatrix4fv(glGetUniformLocation(pbrShader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
renderSphere();
}
}
// render light source (simply re-render sphere at light positions)
// this looks a bit off as we use the same shader, but it'll make their positions obvious and
// keeps the codeprint small.
for (unsigned int i = 0; i < sizeof(lightPositions) / sizeof(lightPositions[0]); ++i)
{
glm::vec3 newPos = lightPositions[i] + glm::vec3(sin(glfwGetTime() * 5.0) * 5.0, 0.0, 0.0);
newPos = lightPositions[i];
glUniform3fv(glGetUniformLocation(pbrShader.Program, ("lightPositions[" + std::to_string(i) + "]").c_str()), 1, &newPos[0]); \
glUniform3fv(glGetUniformLocation(pbrShader.Program, ("lightColors[" + std::to_string(i) + "]").c_str()), 1, &lightColors[i][0]);
model = glm::mat4();
model = glm::translate(model, newPos);
model = glm::scale(model, glm::vec3(0.5f));
glUniformMatrix4fv(glGetUniformLocation(pbrShader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
renderSphere();
}
// render skybox (render as last to prevent overdraw)
backgroundShader.Use();
glUniformMatrix4fv(glGetUniformLocation(backgroundShader.Program, "view"), 1, GL_FALSE, glm::value_ptr(view));
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_CUBE_MAP, envCubemap);
//glBindTexture(GL_TEXTURE_CUBE_MAP, irradianceMap); // display irradiance map
//glBindTexture(GL_TEXTURE_CUBE_MAP, prefilterMap); // display prefilter map
renderCube();
// render BRDF map to screen
//brdfShader.Use();
//RenderQuad();
// Swap the buffers
glfwSwapBuffers(window);
}
glfwTerminate();
return 0;
}
// renders (and builds at first invocation) a sphere
unsigned int sphereVAO = 0;
unsigned int indexCount;
void renderSphere()
{
if (sphereVAO == 0)
{
glGenVertexArrays(1, &sphereVAO);
unsigned int vbo, ebo;
glGenBuffers(1, &vbo);
glGenBuffers(1, &ebo);
std::vector<glm::vec3> positions;
std::vector<glm::vec2> uv;
std::vector<glm::vec3> normals;
std::vector<unsigned int> indices;
const unsigned int X_SEGMENTS = 64;
const unsigned int Y_SEGMENTS = 64;
const float PI = 3.14159265359;
for (unsigned int y = 0; y <= Y_SEGMENTS; ++y)
{
for (unsigned int x = 0; x <= X_SEGMENTS; ++x)
{
float xSegment = (float)x / (float)X_SEGMENTS;
float ySegment = (float)y / (float)Y_SEGMENTS;
float xPos = std::cos(xSegment * 2.0f * PI) * std::sin(ySegment * PI);
float yPos = std::cos(ySegment * PI);
float zPos = std::sin(xSegment * 2.0f * PI) * std::sin(ySegment * PI);
positions.push_back(glm::vec3(xPos, yPos, zPos));
uv.push_back(glm::vec2(xSegment, ySegment));
normals.push_back(glm::vec3(xPos, yPos, zPos));
}
}
bool oddRow = false;
for (int y = 0; y < Y_SEGMENTS; ++y)
{
if (!oddRow) // even rows: y == 0, y == 2; and so on
{
for (int x = 0; x <= X_SEGMENTS; ++x)
{
indices.push_back(y * (X_SEGMENTS + 1) + x);
indices.push_back((y + 1) * (X_SEGMENTS + 1) + x);
}
}
else
{
for (int x = X_SEGMENTS; x >= 0; --x)
{
indices.push_back((y + 1) * (X_SEGMENTS + 1) + x);
indices.push_back(y * (X_SEGMENTS + 1) + x);
}
}
oddRow = !oddRow;
}
indexCount = indices.size();
std::vector<float> data;
for (int i = 0; i < positions.size(); ++i)
{
data.push_back(positions[i].x);
data.push_back(positions[i].y);
data.push_back(positions[i].z);
if (uv.size() > 0)
{
data.push_back(uv[i].x);
data.push_back(uv[i].y);
}
if (normals.size() > 0)
{
data.push_back(normals[i].x);
data.push_back(normals[i].y);
data.push_back(normals[i].z);
}
}
glBindVertexArray(sphereVAO);
glBindBuffer(GL_ARRAY_BUFFER, vbo);
glBufferData(GL_ARRAY_BUFFER, data.size() * sizeof(float), &data[0], GL_STATIC_DRAW);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ebo);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices.size() * sizeof(unsigned int), &indices[0], GL_STATIC_DRAW);
float stride = (3 + 2 + 3) * sizeof(float);
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, stride, (GLvoid*)0);
glEnableVertexAttribArray(1);
glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, stride, (GLvoid*)(3 * sizeof(float)));
glEnableVertexAttribArray(2);
glVertexAttribPointer(2, 3, GL_FLOAT, GL_FALSE, stride, (GLvoid*)(5 * sizeof(float)));
}
glBindVertexArray(sphereVAO);
glDrawElements(GL_TRIANGLE_STRIP, indexCount, GL_UNSIGNED_INT, 0);
}
// RenderCube() Renders a 1x1 3D cube in NDC.
GLuint cubeVAO = 0;
GLuint cubeVBO = 0;
void renderCube()
{
// Initialize (if necessary)
if (cubeVAO == 0)
{
GLfloat vertices[] = {
// Back face
-1.0f, -1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, // Bottom-left
1.0f, 1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f, // top-right
1.0f, -1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 1.0f, 0.0f, // bottom-right
1.0f, 1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f, // top-right
-1.0f, -1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, // bottom-left
-1.0f, 1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 1.0f,// top-left
// Front face
-1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, // bottom-left
1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, // bottom-right
1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, // top-right
1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, // top-right
-1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, // top-left
-1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, // bottom-left
// Left face
-1.0f, 1.0f, 1.0f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-right
-1.0f, 1.0f, -1.0f, -1.0f, 0.0f, 0.0f, 1.0f, 1.0f, // top-left
-1.0f, -1.0f, -1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-left
-1.0f, -1.0f, -1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-left
-1.0f, -1.0f, 1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 0.0f, // bottom-right
-1.0f, 1.0f, 1.0f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-right
// Right face
1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-left
1.0f, -1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-right
1.0f, 1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, // top-right
1.0f, -1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-right
1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-left
1.0f, -1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, // bottom-left
// Bottom face
-1.0f, -1.0f, -1.0f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f, // top-right
1.0f, -1.0f, -1.0f, 0.0f, -1.0f, 0.0f, 1.0f, 1.0f, // top-left
1.0f, -1.0f, 1.0f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f,// bottom-left
1.0f, -1.0f, 1.0f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f, // bottom-left
-1.0f, -1.0f, 1.0f, 0.0f, -1.0f, 0.0f, 0.0f, 0.0f, // bottom-right
-1.0f, -1.0f, -1.0f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f, // top-right
// Top face
-1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f,// top-left
1.0f, 1.0f , 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, // bottom-right
1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, // top-right
1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, // bottom-right
-1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f,// top-left
-1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f // bottom-left
};
glGenVertexArrays(1, &cubeVAO);
glGenBuffers(1, &cubeVBO);
// Fill buffer
glBindBuffer(GL_ARRAY_BUFFER, cubeVBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
// Link vertex attributes
glBindVertexArray(cubeVAO);
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)0);
glEnableVertexAttribArray(1);
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)(3 * sizeof(GLfloat)));
glEnableVertexAttribArray(2);
glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)(6 * sizeof(GLfloat)));
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindVertexArray(0);
}
// Render Cube
glBindVertexArray(cubeVAO);
glDrawArrays(GL_TRIANGLES, 0, 36);
glBindVertexArray(0);
}
// RenderQuad() Renders a 1x1 XY quad in NDC
GLuint quadVAO = 0;
GLuint quadVBO;
void RenderQuad()
{
if (quadVAO == 0)
{
GLfloat quadVertices[] = {
// Positions // Texture Coords
-1.0f, 1.0f, 0.0f, 0.0f, 1.0f,
-1.0f, -1.0f, 0.0f, 0.0f, 0.0f,
1.0f, 1.0f, 0.0f, 1.0f, 1.0f,
1.0f, -1.0f, 0.0f, 1.0f, 0.0f,
};
// Setup plane VAO
glGenVertexArrays(1, &quadVAO);
glGenBuffers(1, &quadVBO);
glBindVertexArray(quadVAO);
glBindBuffer(GL_ARRAY_BUFFER, quadVBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(quadVertices), &quadVertices, GL_STATIC_DRAW);
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 5 * sizeof(GLfloat), (GLvoid*)0);
glEnableVertexAttribArray(1);
glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 5 * sizeof(GLfloat), (GLvoid*)(3 * sizeof(GLfloat)));
}
glBindVertexArray(quadVAO);
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
glBindVertexArray(0);
}
// This function loads a texture from file. Note: texture loading functions like these are usually
// managed by a 'Resource Manager' that manages all resources (like textures, models, audio).
// For learning purposes we'll just define it as a utility function.
unsigned int loadTexture(char const * path)
{
//Generate texture ID and load texture data
unsigned int textureID;
glGenTextures(1, &textureID);
int width, height, nrComponents;
unsigned char *data = stbi_load(path, &width, &height, &nrComponents, 0);
if (data)
{
GLenum format;
if (nrComponents == 1)
format = GL_RED;
else if (nrComponents == 3)
format = GL_RGB;
else if (nrComponents == 4)
format = GL_RGBA;
glBindTexture(GL_TEXTURE_2D, textureID);
glTexImage2D(GL_TEXTURE_2D, 0, format, width, height, 0, format, GL_UNSIGNED_BYTE, data);
glGenerateMipmap(GL_TEXTURE_2D);
// Parameters
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
stbi_image_free(data);
}
else
{
std::cout << "Texture failed to load at path: " << path << std::endl;
stbi_image_free(data);
}
return textureID;
}
#pragma region "User input"
bool keys[1024];
bool keysPressed[1024];
// Moves/alters the camera positions based on user input
void Do_Movement()
{
// Camera controls
if (keys[GLFW_KEY_W])
camera.ProcessKeyboard(FORWARD, deltaTime);
if (keys[GLFW_KEY_S])
camera.ProcessKeyboard(BACKWARD, deltaTime);
if (keys[GLFW_KEY_A])
camera.ProcessKeyboard(LEFT, deltaTime);
if (keys[GLFW_KEY_D])
camera.ProcessKeyboard(RIGHT, deltaTime);
}
// Is called whenever a key is pressed/released via GLFW
void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode)
{
if (key == GLFW_KEY_ESCAPE && action == GLFW_PRESS)
glfwSetWindowShouldClose(window, GL_TRUE);
if (key >= 0 && key <= 1024)
{
if (action == GLFW_PRESS)
keys[key] = true;
else if (action == GLFW_RELEASE)
{
keys[key] = false;
keysPressed[key] = false;
}
}
}
GLfloat lastX = 400, lastY = 300;
bool firstMouse = true;
// Moves/alters the camera positions based on user input
void mouse_callback(GLFWwindow* window, double xpos, double ypos)
{
if (firstMouse)
{
lastX = xpos;
lastY = ypos;
firstMouse = false;
}
GLfloat xoffset = xpos - lastX;
GLfloat yoffset = lastY - ypos;
lastX = xpos;
lastY = ypos;
camera.ProcessMouseMovement(xoffset, yoffset);
}
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
{
camera.ProcessMouseScroll(yoffset);
}
#pragma endregion

View File

@@ -0,0 +1,177 @@
#version 330 core
out vec4 FragColor;
in vec2 TexCoords;
in vec3 WorldPos;
in vec3 Normal;
in mat3 TBN;
// material parameters
uniform sampler2D albedoMap;
uniform sampler2D normalMap;
uniform sampler2D metallicMap;
uniform sampler2D roughnessMap;
uniform sampler2D aoMap;
// IBL
uniform samplerCube irradianceMap;
uniform samplerCube prefilterMap;
uniform sampler2D brdfLUT;
// lights
uniform vec3 lightPositions[4];
uniform vec3 lightColors[4];
uniform vec3 camPos;
const float PI = 3.14159265359;
// ----------------------------------------------------------------------------
// Easy trick to get tangent-normals to world-space to keep PBR code simplified.
// Don't worry if you don't get what's going on; you generally want to do normal
// mapping the usual way for performance anways; I do plan make a note of this
// technique somewhere later in the normal mapping tutorial.
vec3 getNormalFromMap()
{
vec3 tangentNormal = texture(normalMap, TexCoords).xyz * 2.0 - 1.0;
vec3 Q1 = dFdx(WorldPos);
vec3 Q2 = dFdy(WorldPos);
vec2 st1 = dFdx(TexCoords);
vec2 st2 = dFdy(TexCoords);
vec3 N = normalize(Normal);
vec3 T = normalize(Q1*st2.t - Q2*st1.t);
vec3 B = -normalize(cross(N, T));
mat3 TBN = mat3(T, B, N);
return normalize(TBN * tangentNormal);
}
// ----------------------------------------------------------------------------
float DistributionGGX(vec3 N, vec3 H, float roughness)
{
float a = roughness*roughness;
float a2 = a*a;
float NdotH = max(dot(N, H), 0.0);
float NdotH2 = NdotH*NdotH;
float nom = a2;
float denom = (NdotH2 * (a2 - 1.0) + 1.0);
denom = PI * denom * denom;
return nom / denom;
}
// ----------------------------------------------------------------------------
float GeometrySchlickGGX(float NdotV, float roughness)
{
float r = (roughness + 1.0);
float k = (r*r) / 8.0;
float nom = NdotV;
float denom = NdotV * (1.0 - k) + k;
return nom / denom;
}
// ----------------------------------------------------------------------------
float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness)
{
float NdotV = max(dot(N, V), 0.0);
float NdotL = max(dot(N, L), 0.0);
float ggx2 = GeometrySchlickGGX(NdotV, roughness);
float ggx1 = GeometrySchlickGGX(NdotL, roughness);
return ggx1 * ggx2;
}
// ----------------------------------------------------------------------------
vec3 fresnelSchlick(float cosTheta, vec3 F0)
{
return F0 + (1.0 - F0) * pow(1.0 - cosTheta, 5.0);
}
// ----------------------------------------------------------------------------
vec3 fresnelSchlickRoughness(float cosTheta, vec3 F0, float roughness)
{
return F0 + (max(vec3(1.0 - roughness), F0) - F0) * pow(1.0 - cosTheta, 5.0);
}
// ----------------------------------------------------------------------------
void main()
{
// material properties
vec3 albedo = pow(texture(albedoMap, TexCoords).rgb, vec3(2.2));
float metallic = texture(metallicMap, TexCoords).r;
float roughness = texture(roughnessMap, TexCoords).r;
float ao = texture(aoMap, TexCoords).r;
// input lighting data
vec3 N = getNormalFromMap();
vec3 V = normalize(camPos - WorldPos);
vec3 R = reflect(-V, N);
// calculate reflectance at normal incidence; if dia-electric (like plastic) use F0
// of 0.04 and if it's a metal, use their albedo color as F0 (metallic workflow)
vec3 F0 = vec3(0.04);
F0 = mix(F0, albedo, metallic);
// reflectance equation
vec3 Lo = vec3(0.0);
for(int i = 0; i < 4; ++i)
{
// calculate per-light radiance
vec3 L = normalize(lightPositions[i] - WorldPos);
vec3 H = normalize(V + L);
float distance = length(lightPositions[i] - WorldPos);
float attenuation = 1.0 / (distance * distance);
vec3 radiance = lightColors[i] * attenuation;
// Cook-Torrance BRDF
float NDF = DistributionGGX(N, H, roughness);
float G = GeometrySmith(N, V, L, roughness);
vec3 F = fresnelSchlick(max(dot(H, V), 0.0), F0);
vec3 nominator = NDF * G * F;
float denominator = 4 * max(dot(N, V), 0.0) * max(dot(N, L), 0.0) + 0.001; // 0.001 to prevent divide by zero.
vec3 brdf = nominator / denominator;
// kS is equal to Fresnel
vec3 kS = F;
// for energy conservation, the diffuse and specular light can't
// be above 1.0 (unless the surface emits light); to preserve this
// relationship the diffuse component (kD) should equal 1.0 - kS.
vec3 kD = vec3(1.0) - kS;
// multiply kD by the inverse metalness such that only non-metals
// have diffuse lighting, or a linear blend if partly metal (pure metals
// have no diffuse light).
kD *= 1.0 - metallic;
// scale light by NdotL
float NdotL = max(dot(N, L), 0.0);
// add to outgoing radiance Lo
Lo += (kD * albedo / PI + brdf) * radiance * NdotL; // note that we already multiplied the BRDF by the Fresnel (kS) so we won't multiply by kS again
}
// ambient lighting (we now use IBL as the ambient term)
vec3 F = fresnelSchlickRoughness(max(dot(N, V), 0.0), F0, roughness);
vec3 kS = F;
vec3 kD = 1.0 - kS;
kD *= 1.0 - metallic;
vec3 irradiance = texture(irradianceMap, N).rgb;
vec3 diffuse = irradiance * albedo;
// sample both the pre-filter map and the BRDF lut and combine them together as per the Split-Sum approximation to get the IBL specular part.
const float MAX_REFLECTION_LOD = 4.0;
vec3 prefilteredColor = textureLod(prefilterMap, R, roughness * MAX_REFLECTION_LOD).rgb;
vec2 brdf = texture(brdfLUT, vec2(max(dot(N, V), 0.0), roughness)).rg;
vec3 specular = prefilteredColor * (F * brdf.x + brdf.y);
vec3 ambient = (kD * diffuse + specular) * ao;
vec3 color = ambient + Lo;
// HDR tonemapping
color = color / (color + vec3(1.0));
// gamma correct
color = pow(color, vec3(1.0/2.2));
FragColor = vec4(color , 1.0);
}

View File

@@ -0,0 +1,21 @@
#version 330 core
layout (location = 0) in vec3 pos;
layout (location = 1) in vec2 texCoords;
layout (location = 2) in vec3 normal;
out vec2 TexCoords;
out vec3 WorldPos;
out vec3 Normal;
uniform mat4 projection;
uniform mat4 view;
uniform mat4 model;
void main()
{
TexCoords = texCoords;
WorldPos = vec3(model * vec4(pos, 1.0f));
Normal = mat3(model) * normal;
gl_Position = projection * view * vec4(WorldPos, 1.0);
}

View File

@@ -0,0 +1,835 @@
// Std. Includes
#include <string>
// GLEW
#define GLEW_STATIC
#include <GL/glew.h>
// GLFW
#include <GLFW/glfw3.h>
// GL includes
#include <learnopengl/shader.h>
#include <learnopengl/camera.h>
// GLM Mathemtics
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>
// Other Libs
#include <learnopengl/filesystem.h>
#include "stb_image.h"
// Properties
const GLuint SCR_WIDTH = 1280, SCR_HEIGHT = 720;
// Function prototypes
void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode);
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);
void mouse_callback(GLFWwindow* window, double xpos, double ypos);
void Do_Movement();
GLuint loadTexture(GLchar const * path);
void renderSphere();
void renderCube();
void RenderQuad();
// camera
Camera camera(glm::vec3(0.0f, 0.0f, 3.0f));
// timing
GLfloat deltaTime = 0.0f;
GLfloat lastFrame = 0.0f;
// The MAIN function, from here we start the application and run the Game loop
int main()
{
// GLFW Init
// ---------
glfwInit();
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
glfwWindowHint(GLFW_SAMPLES, 4);
glfwWindowHint(GLFW_RESIZABLE, GL_FALSE);
GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", nullptr, nullptr); // Windowed
glfwMakeContextCurrent(window);
// GLFW config
// -----------
glfwSetKeyCallback(window, key_callback);
glfwSetCursorPosCallback(window, mouse_callback);
glfwSetScrollCallback(window, scroll_callback);
glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);
// Initialize GLEW to setup the OpenGL Function pointers
// -----------------------------------------------------
glewExperimental = GL_TRUE;
glewInit();
glGetError();
// Setup OpenGL state
// ------------------
glEnable(GL_DEPTH_TEST);
// set depth function to less than AND equal for skybox depth trick.
glDepthFunc(GL_LEQUAL);
// enable seamless cubemap sampling for lower mip levels in the pre-filter map.
glEnable(GL_TEXTURE_CUBE_MAP_SEAMLESS);
// load and initialize shaders
// ---------------------------
Shader pbrShader("2.2.2.pbr.vs", "2.2.2.pbr.frag");
Shader equirectangularToCubemapShader("2.2.1.cubemap.vs", "2.2.1.equirectangular_to_cubemap.frag");
Shader irradianceShader("2.2.1.cubemap.vs", "2.2.1.irradiance_convolution.frag");
Shader prefilterShader("2.2.1.cubemap.vs", "2.2.1.prefilter.frag");
Shader brdfShader("2.2.1.brdf.vs", "2.2.1.brdf.frag");
Shader backgroundShader("2.2.1.background.vs", "2.2.1.background.frag");
pbrShader.Use();
glUniform1i(glGetUniformLocation(pbrShader.Program, "irradianceMap"), 0);
glUniform1i(glGetUniformLocation(pbrShader.Program, "prefilterMap"), 1);
glUniform1i(glGetUniformLocation(pbrShader.Program, "brdfLUT"), 2);
glUniform1i(glGetUniformLocation(pbrShader.Program, "albedoMap"), 3);
glUniform1i(glGetUniformLocation(pbrShader.Program, "normalMap"), 4);
glUniform1i(glGetUniformLocation(pbrShader.Program, "metallicMap"), 5);
glUniform1i(glGetUniformLocation(pbrShader.Program, "roughnessMap"), 6);
glUniform1i(glGetUniformLocation(pbrShader.Program, "aoMap"), 7);
backgroundShader.Use();
glUniform1i(glGetUniformLocation(backgroundShader.Program, "environmentMap"), 0);
// load PBR material textures
// --------------------------
// rusted iron
unsigned int ironAlbedoMap = loadTexture(FileSystem::getPath("resources/textures/pbr/rusted_iron/albedo.png").c_str());
unsigned int ironNormalMap = loadTexture(FileSystem::getPath("resources/textures/pbr/rusted_iron/normal.png").c_str());
unsigned int ironMetallicMap = loadTexture(FileSystem::getPath("resources/textures/pbr/rusted_iron/metallic.png").c_str());
unsigned int ironRoughnessMap = loadTexture(FileSystem::getPath("resources/textures/pbr/rusted_iron/roughness.png").c_str());
unsigned int ironAOMap = loadTexture(FileSystem::getPath("resources/textures/pbr/rusted_iron/ao.png").c_str());
// gold
unsigned int goldAlbedoMap = loadTexture(FileSystem::getPath("resources/textures/pbr/gold/albedo.png").c_str());
unsigned int goldNormalMap = loadTexture(FileSystem::getPath("resources/textures/pbr/gold/normal.png").c_str());
unsigned int goldMetallicMap = loadTexture(FileSystem::getPath("resources/textures/pbr/gold/metallic.png").c_str());
unsigned int goldRoughnessMap = loadTexture(FileSystem::getPath("resources/textures/pbr/gold/roughness.png").c_str());
unsigned int goldAOMap = loadTexture(FileSystem::getPath("resources/textures/pbr/gold/ao.png").c_str());
// grass
unsigned int grassAlbedoMap = loadTexture(FileSystem::getPath("resources/textures/pbr/grass/albedo.png").c_str());
unsigned int grassNormalMap = loadTexture(FileSystem::getPath("resources/textures/pbr/grass/normal.png").c_str());
unsigned int grassMetallicMap = loadTexture(FileSystem::getPath("resources/textures/pbr/grass/metallic.png").c_str());
unsigned int grassRoughnessMap = loadTexture(FileSystem::getPath("resources/textures/pbr/grass/roughness.png").c_str());
unsigned int grassAOMap = loadTexture(FileSystem::getPath("resources/textures/pbr/grass/ao.png").c_str());
// plastic
unsigned int plasticAlbedoMap = loadTexture(FileSystem::getPath("resources/textures/pbr/plastic/albedo.png").c_str());
unsigned int plasticNormalMap = loadTexture(FileSystem::getPath("resources/textures/pbr/plastic/normal.png").c_str());
unsigned int plasticMetallicMap = loadTexture(FileSystem::getPath("resources/textures/pbr/plastic/metallic.png").c_str());
unsigned int plasticRoughnessMap = loadTexture(FileSystem::getPath("resources/textures/pbr/plastic/roughness.png").c_str());
unsigned int plasticAOMap = loadTexture(FileSystem::getPath("resources/textures/pbr/plastic/ao.png").c_str());
// wall
unsigned int wallAlbedoMap = loadTexture(FileSystem::getPath("resources/textures/pbr/wall/albedo.png").c_str());
unsigned int wallNormalMap = loadTexture(FileSystem::getPath("resources/textures/pbr/wall/normal.png").c_str());
unsigned int wallMetallicMap = loadTexture(FileSystem::getPath("resources/textures/pbr/wall/metallic.png").c_str());
unsigned int wallRoughnessMap = loadTexture(FileSystem::getPath("resources/textures/pbr/wall/roughness.png").c_str());
unsigned int wallAOMap = loadTexture(FileSystem::getPath("resources/textures/pbr/wall/ao.png").c_str());
// lights
// ------
glm::vec3 lightPositions[] = {
glm::vec3(-10.0f, 10.0f, 10.0f),
glm::vec3( 10.0f, 10.0f, 10.0f),
glm::vec3(-10.0f, -10.0f, 10.0f),
glm::vec3( 10.0f, -10.0f, 10.0f),
};
glm::vec3 lightColors[] = {
glm::vec3(300.0f, 300.0f, 300.0f),
glm::vec3(300.0f, 300.0f, 300.0f),
glm::vec3(300.0f, 300.0f, 300.0f),
glm::vec3(300.0f, 300.0f, 300.0f)
};
int nrRows = 7;
int nrColumns = 7;
float spacing = 2.5;
// pbr: setup framebuffer
// ----------------------
unsigned int captureFBO;
unsigned int captureRBO;
glGenFramebuffers(1, &captureFBO);
glGenRenderbuffers(1, &captureRBO);
glBindFramebuffer(GL_FRAMEBUFFER, captureFBO);
glBindRenderbuffer(GL_RENDERBUFFER, captureRBO);
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, 512, 512);
glFramebufferRenderbuffer(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT, GL_RENDERBUFFER, captureRBO);
// pbr: load the HDR environment map
// ---------------------------------
stbi_set_flip_vertically_on_load(true);
int width, height, nrComponents;
float *data = stbi_loadf(FileSystem::getPath("resources/textures/hdr/newport_loft.hdr").c_str(), &width, &height, &nrComponents, 0);
unsigned int hdrTexture;
if (data)
{
glGenTextures(1, &hdrTexture);
glBindTexture(GL_TEXTURE_2D, hdrTexture);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB16F, width, height, 0, GL_RGB, GL_FLOAT, data); // note how we specify the texture's data value to be float
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
stbi_image_free(data);
}
else
{
std::cout << "Failed to load HDR image." << std::endl;
}
// pbr: setup cubemap to render to and attach to framebuffer
// ---------------------------------------------------------
unsigned int envCubemap;
glGenTextures(1, &envCubemap);
glBindTexture(GL_TEXTURE_CUBE_MAP, envCubemap);
for (unsigned int i = 0; i < 6; ++i)
{
glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, GL_RGB16F, 512, 512, 0, GL_RGB, GL_FLOAT, nullptr);
}
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); // enable pre-filter mipmap sampling (combatting visible dots artifact)
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
// pbr: set up projection and view matrices for capturing data onto the 6 cubemap face directions
// ----------------------------------------------------------------------------------------------
glm::mat4 captureProjection = glm::perspective(glm::radians(90.0f), 1.0f, 0.1f, 10.0f);
glm::mat4 captureViews[] =
{
glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(1.0f, 0.0f, 0.0f), glm::vec3(0.0f, -1.0f, 0.0f)),
glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(-1.0f, 0.0f, 0.0f), glm::vec3(0.0f, -1.0f, 0.0f)),
glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f, 1.0f, 0.0f), glm::vec3(0.0f, 0.0f, 1.0f)),
glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f, -1.0f, 0.0f), glm::vec3(0.0f, 0.0f, -1.0f)),
glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f, 0.0f, 1.0f), glm::vec3(0.0f, -1.0f, 0.0f)),
glm::lookAt(glm::vec3(0.0f, 0.0f, 0.0f), glm::vec3(0.0f, 0.0f, -1.0f), glm::vec3(0.0f, -1.0f, 0.0f))
};
// pbr: convert HDR equirectangular environment map to cubemap equivalent
// ----------------------------------------------------------------------
equirectangularToCubemapShader.Use();
glUniform1i(glGetUniformLocation(equirectangularToCubemapShader.Program, "equirectangularMap"), 0);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, hdrTexture);
glUniformMatrix4fv(glGetUniformLocation(equirectangularToCubemapShader.Program, "projection"), 1, GL_FALSE, glm::value_ptr(captureProjection));
glViewport(0, 0, 512, 512); // don't forget to configure the viewport to the capture dimensions.
glBindFramebuffer(GL_FRAMEBUFFER, captureFBO);
for (unsigned int i = 0; i < 6; ++i)
{
glUniformMatrix4fv(glGetUniformLocation(equirectangularToCubemapShader.Program, "view"), 1, GL_FALSE, glm::value_ptr(captureViews[i]));
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, envCubemap, 0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
renderCube();
}
glBindFramebuffer(GL_FRAMEBUFFER, 0);
// then let OpenGL generate mipmaps from first mip face (combatting visible dots artifact)
glBindTexture(GL_TEXTURE_CUBE_MAP, envCubemap);
glGenerateMipmap(GL_TEXTURE_CUBE_MAP);
// pbr: create an irradiance cubemap, and re-scale capture FBO to irradiance scale.
// --------------------------------------------------------------------------------
unsigned int irradianceMap;
glGenTextures(1, &irradianceMap);
glBindTexture(GL_TEXTURE_CUBE_MAP, irradianceMap);
for (unsigned int i = 0; i < 6; ++i)
{
glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, GL_RGB32F, 32, 32, 0, GL_RGB, GL_FLOAT, nullptr);
}
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glBindFramebuffer(GL_FRAMEBUFFER, captureFBO);
glBindRenderbuffer(GL_RENDERBUFFER, captureRBO);
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, 32, 32);
// pbr: solve diffuse integral by convolution to create an irradiance (cube)map.
// -----------------------------------------------------------------------------
irradianceShader.Use();
glUniform1i(glGetUniformLocation(irradianceShader.Program, "environmentMap"), 0);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_CUBE_MAP, envCubemap);
glUniformMatrix4fv(glGetUniformLocation(irradianceShader.Program, "projection"), 1, GL_FALSE, glm::value_ptr(captureProjection));
glViewport(0, 0, 32, 32); // don't forget to configure the viewport to the capture dimensions.
glBindFramebuffer(GL_FRAMEBUFFER, captureFBO);
for (unsigned int i = 0; i < 6; ++i)
{
glUniformMatrix4fv(glGetUniformLocation(irradianceShader.Program, "view"), 1, GL_FALSE, glm::value_ptr(captureViews[i]));
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, irradianceMap, 0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
renderCube();
}
glBindFramebuffer(GL_FRAMEBUFFER, 0);
// pbr: create a pre-filter cubemap, and re-scale capture FBO to pre-filter scale.
// --------------------------------------------------------------------------------
unsigned int prefilterMap;
glGenTextures(1, &prefilterMap);
glBindTexture(GL_TEXTURE_CUBE_MAP, prefilterMap);
for (unsigned int i = 0; i < 6; ++i)
{
glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, 0, GL_RGB16F, 128, 128, 0, GL_RGB, GL_FLOAT, nullptr);
}
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); // be sure to set minifcation filter to mip_linear
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
// generate mipmaps for the cubemap so OpenGL automatically allocates the required memory.
glGenerateMipmap(GL_TEXTURE_CUBE_MAP);
// pbr: run a quasi monte-carlo simulation on the environment lighting to create a prefilter (cube)map.
// ----------------------------------------------------------------------------------------------------
prefilterShader.Use();
glUniform1i(glGetUniformLocation(prefilterShader.Program, "environmentMap"), 0);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_CUBE_MAP, envCubemap);
glUniformMatrix4fv(glGetUniformLocation(prefilterShader.Program, "projection"), 1, GL_FALSE, glm::value_ptr(captureProjection));
glBindFramebuffer(GL_FRAMEBUFFER, captureFBO);
unsigned int maxMipLevels = 5;
for (unsigned int mip = 0; mip < maxMipLevels; ++mip)
{
// reisze framebuffer according to mip-level size.
unsigned int mipWidth = 128 * std::pow(0.5, mip);
unsigned int mipHeight = 128 * std::pow(0.5, mip);
glBindRenderbuffer(GL_RENDERBUFFER, captureRBO);
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, mipWidth, mipHeight);
glViewport(0, 0, mipWidth, mipHeight);
float roughness = (float)mip / (float)(maxMipLevels - 1);
glUniform1f(glGetUniformLocation(prefilterShader.Program, "roughness"), roughness);
for (unsigned int i = 0; i < 6; ++i)
{
glUniformMatrix4fv(glGetUniformLocation(prefilterShader.Program, "view"), 1, GL_FALSE, glm::value_ptr(captureViews[i]));
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_CUBE_MAP_POSITIVE_X + i, prefilterMap, mip);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
renderCube();
}
}
glBindFramebuffer(GL_FRAMEBUFFER, 0);
// pbr: generate a 2D LUT from the BRDF equations used.
// ----------------------------------------------------
unsigned int brdfLUTTexture;
glGenTextures(1, &brdfLUTTexture);
// pre-allocate enough memory for the LUT texture.
glBindTexture(GL_TEXTURE_2D, brdfLUTTexture);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RG16F, 512, 512, 0, GL_RG, GL_FLOAT, 0);
// be sure to set wrapping mode to GL_CLAMP_TO_EDGE
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
// then re-configure capture framebuffer object and render screen-space quad with BRDF shader.
glBindFramebuffer(GL_FRAMEBUFFER, captureFBO);
glBindRenderbuffer(GL_RENDERBUFFER, captureRBO);
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT24, 512, 512);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, brdfLUTTexture, 0);
glViewport(0, 0, 512, 512);
brdfShader.Use();
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
RenderQuad();
glBindFramebuffer(GL_FRAMEBUFFER, 0);
// initialize static shader uniforms before rendering
// --------------------------------------------------
glm::mat4 projection = glm::perspective(camera.Zoom, (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f);
pbrShader.Use();
glUniformMatrix4fv(glGetUniformLocation(pbrShader.Program, "projection"), 1, GL_FALSE, glm::value_ptr(projection));
backgroundShader.Use();
glUniformMatrix4fv(glGetUniformLocation(backgroundShader.Program, "projection"), 1, GL_FALSE, glm::value_ptr(projection));
// then before rendering, configure the viewport to the actual screen dimensions
glViewport(0, 0, SCR_WIDTH, SCR_HEIGHT);
// Game loop
while (!glfwWindowShouldClose(window))
{
// set frame time
GLfloat currentFrame = glfwGetTime();
deltaTime = currentFrame - lastFrame;
lastFrame = currentFrame;
// check and call events
glfwPollEvents();
Do_Movement();
// clear the colorbuffer
glClearColor(0.1f, 0.1f, 0.1f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// render scene, supplying the convoluted irradiance map to the final shader.
// ------------------------------------------------------------------------------------------
pbrShader.Use();
glm::mat4 model;
glm::mat4 view = camera.GetViewMatrix();
glUniformMatrix4fv(glGetUniformLocation(pbrShader.Program, "view"), 1, GL_FALSE, glm::value_ptr(view));
glUniform3fv(glGetUniformLocation(pbrShader.Program, "camPos"), 1, &camera.Position[0]);
// bind pre-computed IBL data
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_CUBE_MAP, irradianceMap);
glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_CUBE_MAP, prefilterMap);
glActiveTexture(GL_TEXTURE2);
glBindTexture(GL_TEXTURE_2D, brdfLUTTexture);
// rusted iron
glActiveTexture(GL_TEXTURE3);
glBindTexture(GL_TEXTURE_2D, ironAlbedoMap);
glActiveTexture(GL_TEXTURE4);
glBindTexture(GL_TEXTURE_2D, ironNormalMap);
glActiveTexture(GL_TEXTURE5);
glBindTexture(GL_TEXTURE_2D, ironMetallicMap);
glActiveTexture(GL_TEXTURE6);
glBindTexture(GL_TEXTURE_2D, ironRoughnessMap);
glActiveTexture(GL_TEXTURE7);
glBindTexture(GL_TEXTURE_2D, ironAOMap);
model = glm::mat4();
model = glm::translate(model, glm::vec3(-5.0, 0.0, 2.0));
glUniformMatrix4fv(glGetUniformLocation(pbrShader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
renderSphere();
// gold
glActiveTexture(GL_TEXTURE3);
glBindTexture(GL_TEXTURE_2D, goldAlbedoMap);
glActiveTexture(GL_TEXTURE4);
glBindTexture(GL_TEXTURE_2D, goldNormalMap);
glActiveTexture(GL_TEXTURE5);
glBindTexture(GL_TEXTURE_2D, goldMetallicMap);
glActiveTexture(GL_TEXTURE6);
glBindTexture(GL_TEXTURE_2D, goldRoughnessMap);
glActiveTexture(GL_TEXTURE7);
glBindTexture(GL_TEXTURE_2D, goldAOMap);
model = glm::mat4();
model = glm::translate(model, glm::vec3(-3.0, 0.0, 2.0));
glUniformMatrix4fv(glGetUniformLocation(pbrShader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
renderSphere();
// grass
glActiveTexture(GL_TEXTURE3);
glBindTexture(GL_TEXTURE_2D, grassAlbedoMap);
glActiveTexture(GL_TEXTURE4);
glBindTexture(GL_TEXTURE_2D, grassNormalMap);
glActiveTexture(GL_TEXTURE5);
glBindTexture(GL_TEXTURE_2D, grassMetallicMap);
glActiveTexture(GL_TEXTURE6);
glBindTexture(GL_TEXTURE_2D, grassRoughnessMap);
glActiveTexture(GL_TEXTURE7);
glBindTexture(GL_TEXTURE_2D, grassAOMap);
model = glm::mat4();
model = glm::translate(model, glm::vec3(-1.0, 0.0, 2.0));
glUniformMatrix4fv(glGetUniformLocation(pbrShader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
renderSphere();
// plastic
glActiveTexture(GL_TEXTURE3);
glBindTexture(GL_TEXTURE_2D, plasticAlbedoMap);
glActiveTexture(GL_TEXTURE4);
glBindTexture(GL_TEXTURE_2D, plasticNormalMap);
glActiveTexture(GL_TEXTURE5);
glBindTexture(GL_TEXTURE_2D, plasticMetallicMap);
glActiveTexture(GL_TEXTURE6);
glBindTexture(GL_TEXTURE_2D, plasticRoughnessMap);
glActiveTexture(GL_TEXTURE7);
glBindTexture(GL_TEXTURE_2D, plasticAOMap);
model = glm::mat4();
model = glm::translate(model, glm::vec3(1.0, 0.0, 2.0));
glUniformMatrix4fv(glGetUniformLocation(pbrShader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
renderSphere();
// wall
glActiveTexture(GL_TEXTURE3);
glBindTexture(GL_TEXTURE_2D, wallAlbedoMap);
glActiveTexture(GL_TEXTURE4);
glBindTexture(GL_TEXTURE_2D, wallNormalMap);
glActiveTexture(GL_TEXTURE5);
glBindTexture(GL_TEXTURE_2D, wallMetallicMap);
glActiveTexture(GL_TEXTURE6);
glBindTexture(GL_TEXTURE_2D, wallRoughnessMap);
glActiveTexture(GL_TEXTURE7);
glBindTexture(GL_TEXTURE_2D, wallAOMap);
model = glm::mat4();
model = glm::translate(model, glm::vec3(3.0, 0.0, 2.0));
glUniformMatrix4fv(glGetUniformLocation(pbrShader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
renderSphere();
// render light source (simply re-render sphere at light positions)
// this looks a bit off as we use the same shader, but it'll make their positions obvious and
// keeps the codeprint small.
for (unsigned int i = 0; i < sizeof(lightPositions) / sizeof(lightPositions[0]); ++i)
{
glm::vec3 newPos = lightPositions[i] + glm::vec3(sin(glfwGetTime() * 5.0) * 5.0, 0.0, 0.0);
newPos = lightPositions[i];
glUniform3fv(glGetUniformLocation(pbrShader.Program, ("lightPositions[" + std::to_string(i) + "]").c_str()), 1, &newPos[0]); \
glUniform3fv(glGetUniformLocation(pbrShader.Program, ("lightColors[" + std::to_string(i) + "]").c_str()), 1, &lightColors[i][0]);
model = glm::mat4();
model = glm::translate(model, newPos);
model = glm::scale(model, glm::vec3(0.5f));
glUniformMatrix4fv(glGetUniformLocation(pbrShader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));
renderSphere();
}
// render skybox (render as last to prevent overdraw)
backgroundShader.Use();
glUniformMatrix4fv(glGetUniformLocation(backgroundShader.Program, "view"), 1, GL_FALSE, glm::value_ptr(view));
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_CUBE_MAP, envCubemap);
//glBindTexture(GL_TEXTURE_CUBE_MAP, irradianceMap); // display irradiance map
//glBindTexture(GL_TEXTURE_CUBE_MAP, prefilterMap); // display prefilter map
renderCube();
// render BRDF map to screen
//brdfShader.Use();
//RenderQuad();
// Swap the buffers
glfwSwapBuffers(window);
}
glfwTerminate();
return 0;
}
// renders (and builds at first invocation) a sphere
unsigned int sphereVAO = 0;
unsigned int indexCount;
void renderSphere()
{
if (sphereVAO == 0)
{
glGenVertexArrays(1, &sphereVAO);
unsigned int vbo, ebo;
glGenBuffers(1, &vbo);
glGenBuffers(1, &ebo);
std::vector<glm::vec3> positions;
std::vector<glm::vec2> uv;
std::vector<glm::vec3> normals;
std::vector<unsigned int> indices;
const unsigned int X_SEGMENTS = 64;
const unsigned int Y_SEGMENTS = 64;
const float PI = 3.14159265359;
for (unsigned int y = 0; y <= Y_SEGMENTS; ++y)
{
for (unsigned int x = 0; x <= X_SEGMENTS; ++x)
{
float xSegment = (float)x / (float)X_SEGMENTS;
float ySegment = (float)y / (float)Y_SEGMENTS;
float xPos = std::cos(xSegment * 2.0f * PI) * std::sin(ySegment * PI);
float yPos = std::cos(ySegment * PI);
float zPos = std::sin(xSegment * 2.0f * PI) * std::sin(ySegment * PI);
positions.push_back(glm::vec3(xPos, yPos, zPos));
uv.push_back(glm::vec2(xSegment, ySegment));
normals.push_back(glm::vec3(xPos, yPos, zPos));
}
}
bool oddRow = false;
for (int y = 0; y < Y_SEGMENTS; ++y)
{
if (!oddRow) // even rows: y == 0, y == 2; and so on
{
for (int x = 0; x <= X_SEGMENTS; ++x)
{
indices.push_back(y * (X_SEGMENTS + 1) + x);
indices.push_back((y + 1) * (X_SEGMENTS + 1) + x);
}
}
else
{
for (int x = X_SEGMENTS; x >= 0; --x)
{
indices.push_back((y + 1) * (X_SEGMENTS + 1) + x);
indices.push_back(y * (X_SEGMENTS + 1) + x);
}
}
oddRow = !oddRow;
}
indexCount = indices.size();
std::vector<float> data;
for (int i = 0; i < positions.size(); ++i)
{
data.push_back(positions[i].x);
data.push_back(positions[i].y);
data.push_back(positions[i].z);
if (uv.size() > 0)
{
data.push_back(uv[i].x);
data.push_back(uv[i].y);
}
if (normals.size() > 0)
{
data.push_back(normals[i].x);
data.push_back(normals[i].y);
data.push_back(normals[i].z);
}
}
glBindVertexArray(sphereVAO);
glBindBuffer(GL_ARRAY_BUFFER, vbo);
glBufferData(GL_ARRAY_BUFFER, data.size() * sizeof(float), &data[0], GL_STATIC_DRAW);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ebo);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices.size() * sizeof(unsigned int), &indices[0], GL_STATIC_DRAW);
float stride = (3 + 2 + 3) * sizeof(float);
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, stride, (GLvoid*)0);
glEnableVertexAttribArray(1);
glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, stride, (GLvoid*)(3 * sizeof(float)));
glEnableVertexAttribArray(2);
glVertexAttribPointer(2, 3, GL_FLOAT, GL_FALSE, stride, (GLvoid*)(5 * sizeof(float)));
}
glBindVertexArray(sphereVAO);
glDrawElements(GL_TRIANGLE_STRIP, indexCount, GL_UNSIGNED_INT, 0);
}
// RenderCube() Renders a 1x1 3D cube in NDC.
GLuint cubeVAO = 0;
GLuint cubeVBO = 0;
void renderCube()
{
// Initialize (if necessary)
if (cubeVAO == 0)
{
GLfloat vertices[] = {
// Back face
-1.0f, -1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, // Bottom-left
1.0f, 1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f, // top-right
1.0f, -1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 1.0f, 0.0f, // bottom-right
1.0f, 1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 1.0f, 1.0f, // top-right
-1.0f, -1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 0.0f, // bottom-left
-1.0f, 1.0f, -1.0f, 0.0f, 0.0f, -1.0f, 0.0f, 1.0f,// top-left
// Front face
-1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, // bottom-left
1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, // bottom-right
1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, // top-right
1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, // top-right
-1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, // top-left
-1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, // bottom-left
// Left face
-1.0f, 1.0f, 1.0f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-right
-1.0f, 1.0f, -1.0f, -1.0f, 0.0f, 0.0f, 1.0f, 1.0f, // top-left
-1.0f, -1.0f, -1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-left
-1.0f, -1.0f, -1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-left
-1.0f, -1.0f, 1.0f, -1.0f, 0.0f, 0.0f, 0.0f, 0.0f, // bottom-right
-1.0f, 1.0f, 1.0f, -1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-right
// Right face
1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-left
1.0f, -1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-right
1.0f, 1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, // top-right
1.0f, -1.0f, -1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, // bottom-right
1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // top-left
1.0f, -1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, // bottom-left
// Bottom face
-1.0f, -1.0f, -1.0f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f, // top-right
1.0f, -1.0f, -1.0f, 0.0f, -1.0f, 0.0f, 1.0f, 1.0f, // top-left
1.0f, -1.0f, 1.0f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f,// bottom-left
1.0f, -1.0f, 1.0f, 0.0f, -1.0f, 0.0f, 1.0f, 0.0f, // bottom-left
-1.0f, -1.0f, 1.0f, 0.0f, -1.0f, 0.0f, 0.0f, 0.0f, // bottom-right
-1.0f, -1.0f, -1.0f, 0.0f, -1.0f, 0.0f, 0.0f, 1.0f, // top-right
// Top face
-1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f,// top-left
1.0f, 1.0f , 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, // bottom-right
1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, // top-right
1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 1.0f, 0.0f, // bottom-right
-1.0f, 1.0f, -1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f,// top-left
-1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f // bottom-left
};
glGenVertexArrays(1, &cubeVAO);
glGenBuffers(1, &cubeVBO);
// Fill buffer
glBindBuffer(GL_ARRAY_BUFFER, cubeVBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);
// Link vertex attributes
glBindVertexArray(cubeVAO);
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)0);
glEnableVertexAttribArray(1);
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)(3 * sizeof(GLfloat)));
glEnableVertexAttribArray(2);
glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 8 * sizeof(GLfloat), (GLvoid*)(6 * sizeof(GLfloat)));
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindVertexArray(0);
}
// Render Cube
glBindVertexArray(cubeVAO);
glDrawArrays(GL_TRIANGLES, 0, 36);
glBindVertexArray(0);
}
// RenderQuad() Renders a 1x1 XY quad in NDC
GLuint quadVAO = 0;
GLuint quadVBO;
void RenderQuad()
{
if (quadVAO == 0)
{
GLfloat quadVertices[] = {
// Positions // Texture Coords
-1.0f, 1.0f, 0.0f, 0.0f, 1.0f,
-1.0f, -1.0f, 0.0f, 0.0f, 0.0f,
1.0f, 1.0f, 0.0f, 1.0f, 1.0f,
1.0f, -1.0f, 0.0f, 1.0f, 0.0f,
};
// Setup plane VAO
glGenVertexArrays(1, &quadVAO);
glGenBuffers(1, &quadVBO);
glBindVertexArray(quadVAO);
glBindBuffer(GL_ARRAY_BUFFER, quadVBO);
glBufferData(GL_ARRAY_BUFFER, sizeof(quadVertices), &quadVertices, GL_STATIC_DRAW);
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 5 * sizeof(GLfloat), (GLvoid*)0);
glEnableVertexAttribArray(1);
glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 5 * sizeof(GLfloat), (GLvoid*)(3 * sizeof(GLfloat)));
}
glBindVertexArray(quadVAO);
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
glBindVertexArray(0);
}
// This function loads a texture from file. Note: texture loading functions like these are usually
// managed by a 'Resource Manager' that manages all resources (like textures, models, audio).
// For learning purposes we'll just define it as a utility function.
unsigned int loadTexture(char const * path)
{
//Generate texture ID and load texture data
unsigned int textureID;
glGenTextures(1, &textureID);
int width, height, nrComponents;
unsigned char *data = stbi_load(path, &width, &height, &nrComponents, 0);
if (data)
{
GLenum format;
if (nrComponents == 1)
format = GL_RED;
else if (nrComponents == 3)
format = GL_RGB;
else if (nrComponents == 4)
format = GL_RGBA;
glBindTexture(GL_TEXTURE_2D, textureID);
glTexImage2D(GL_TEXTURE_2D, 0, format, width, height, 0, format, GL_UNSIGNED_BYTE, data);
glGenerateMipmap(GL_TEXTURE_2D);
// Parameters
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
stbi_image_free(data);
}
else
{
std::cout << "Texture failed to load at path: " << path << std::endl;
stbi_image_free(data);
}
return textureID;
}
#pragma region "User input"
bool keys[1024];
bool keysPressed[1024];
// Moves/alters the camera positions based on user input
void Do_Movement()
{
// Camera controls
if (keys[GLFW_KEY_W])
camera.ProcessKeyboard(FORWARD, deltaTime);
if (keys[GLFW_KEY_S])
camera.ProcessKeyboard(BACKWARD, deltaTime);
if (keys[GLFW_KEY_A])
camera.ProcessKeyboard(LEFT, deltaTime);
if (keys[GLFW_KEY_D])
camera.ProcessKeyboard(RIGHT, deltaTime);
}
// Is called whenever a key is pressed/released via GLFW
void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode)
{
if (key == GLFW_KEY_ESCAPE && action == GLFW_PRESS)
glfwSetWindowShouldClose(window, GL_TRUE);
if (key >= 0 && key <= 1024)
{
if (action == GLFW_PRESS)
keys[key] = true;
else if (action == GLFW_RELEASE)
{
keys[key] = false;
keysPressed[key] = false;
}
}
}
GLfloat lastX = 400, lastY = 300;
bool firstMouse = true;
// Moves/alters the camera positions based on user input
void mouse_callback(GLFWwindow* window, double xpos, double ypos)
{
if (firstMouse)
{
lastX = xpos;
lastY = ypos;
firstMouse = false;
}
GLfloat xoffset = xpos - lastX;
GLfloat yoffset = lastY - ypos;
lastX = xpos;
lastY = ypos;
camera.ProcessMouseMovement(xoffset, yoffset);
}
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
{
camera.ProcessMouseScroll(yoffset);
}
#pragma endregion