feat: integrate tactile stream decoding

This commit is contained in:
2025-10-24 17:15:53 +08:00
parent d819d40fe1
commit 1f65ba0114
32 changed files with 1284 additions and 5400 deletions

View File

@@ -1,94 +1,129 @@
cmake_minimum_required(VERSION 3.20)
project(touchsensor VERSION 2.0.0 LANGUAGES CXX)
set(BUILD_EXAMPLE ON)
option(BUILD_EXAMPLE "Build the cpstream demo executable" ON)
set(QT_VERSION Qt6 CACHE STRING "Qt major version to use")
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_CXX_STANDARD 23)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
set(CMAKE_BUILD_TYPE "Release")
set(CMAKE_AUTOMOC ON)
set(CMAKE_AUTORCC ON)
add_compile_options(-Os -O3)
add_subdirectory("serial")
set(QT_VERSION Qt6)
list(APPEND CMAKE_PREFIX_PATH
"D:/Environment/include"
"D:/Environment/lib"
)
find_package(${QT_VERSION} REQUIRED COMPONENTS Widgets Network PrintSupport)
find_package(Eigen3 REQUIRED)
include_directories(.)
qt_standard_project_setup()
file(
GLOB_RECURSE PROJECT_SOURCE
GLOB_RECURSE MODERN_QT_SOURCES
CONFIGURE_DEPENDS
# Project source
"modern-qt/*.cc"
# Custom signals
"modern-qt/widget/sliders.hh"
)
add_library(
modern-qt SHARED
${PROJECT_SOURCE}
set(MODERN_QT_HEADERS
modern-qt/widget/select.hh
modern-qt/widget/select.impl.hh
modern-qt/widget/sliders.hh
)
target_link_libraries(
modern-qt PUBLIC
add_library(modern-qt SHARED ${MODERN_QT_SOURCES} ${MODERN_QT_HEADERS})
target_include_directories(modern-qt PUBLIC ${CMAKE_CURRENT_SOURCE_DIR})
target_link_libraries(modern-qt
PUBLIC
${QT_VERSION}::Widgets
${QT_VERSION}::Network
Eigen3::Eigen
)
file(
GLOB_RECURSE WIDGETS_CC
CONFIGURE_DEPENDS "components/*.cc"
)
file(
GLOB_RECURSE QCUSTOMPLOT_SOURCE
GLOB_RECURSE QCUSTOMPLOT_SOURCES
CONFIGURE_DEPENDS
"qcustomplot/*.cpp"
"qcustomplot/*.h"
)
add_library(
qcustomplot SHARED
${QCUSTOMPLOT_SOURCE}
)
target_link_libraries(
qcustomplot PUBLIC
add_library(qcustomplot SHARED ${QCUSTOMPLOT_SOURCES})
target_include_directories(qcustomplot PUBLIC ${CMAKE_CURRENT_SOURCE_DIR})
target_link_libraries(qcustomplot
PUBLIC
${QT_VERSION}::Core
${QT_VERSION}::Gui
${QT_VERSION}::PrintSupport
)
qt_standard_project_setup()
add_executable(
${PROJECT_NAME}
${WIDGETS_CC}
main.cc
file(
GLOB_RECURSE COMPONENT_SOURCES
CONFIGURE_DEPENDS
"components/*.cc"
)
file(
GLOB_RECURSE UTILITY_SOURCES
CONFIGURE_DEPENDS
"dlog/*.cc"
)
set(FFMSEP_SOURCES
components/ffmsep/cpdecoder.cc
components/ffmsep/cpstream_core.cc
components/ffmsep/tactile/tacdec.cc
)
set(FFMSEP_HEADERS
components/ffmsep/cpdecoder.hh
components/ffmsep/cpstream_core.hh
components/ffmsep/tactile/tacdec.hh
)
set(FFMSEP_INCLUDE_DIR "${CMAKE_CURRENT_SOURCE_DIR}/components/ffmsep")
set(TOUCHSENSOR_HEADERS
component.hh
resources.qrc
components/view.cc
modern-qt/widget/select.cc
components/charts/heatmap.cc
components/charts/heatmap.hh
components/charts/heatmap.impl.hh
dlog/dlog.hh
dlog/dlog.cc
components/ffmsep/cpdecoder.hh
components/ffmsep/cpdecoder.cc
components/ffmsep/tactile/tacdec.h
components/ffmsep/tactile/tecdec.cc
${FFMSEP_HEADERS}
)
qt6_add_resources(QRC_FILES resources.qrc)
target_sources(${PROJECT_NAME} PRIVATE ${QRC_FILES})
target_link_libraries(
${PROJECT_NAME}
qt6_add_resources(APP_RESOURCES resources.qrc)
add_executable(${PROJECT_NAME}
${COMPONENT_SOURCES}
${UTILITY_SOURCES}
${TOUCHSENSOR_HEADERS}
main.cc
)
target_sources(${PROJECT_NAME} PRIVATE ${APP_RESOURCES})
target_include_directories(${PROJECT_NAME}
PRIVATE
${CMAKE_CURRENT_SOURCE_DIR}
${FFMSEP_INCLUDE_DIR}
)
target_link_libraries(${PROJECT_NAME}
PRIVATE
${QT_VERSION}::Widgets
${QT_VERSION}::Network
modern-qt
qcustomplot
serial
setupapi
spdlog
)
if(BUILD_EXAMPLE)
add_executable(cpstream_demo
examples/cpstream_demo.cc
${FFMSEP_SOURCES}
)
target_include_directories(cpstream_demo
PRIVATE
${CMAKE_CURRENT_SOURCE_DIR}
${FFMSEP_INCLUDE_DIR}
)
target_link_libraries(cpstream_demo PRIVATE serial)
target_link_libraries(cpstream_demo PRIVATE setupapi)
endif()

93
README.md Normal file
View File

@@ -0,0 +1,93 @@
# TouchSensor 2.0
> Real-time tactile sensor exploration UI powered by Qt 6 and a custom Modern Qt component toolkit.
![Status](https://img.shields.io/badge/status-prototype-orange?style=for-the-badge)
![Qt 6](https://img.shields.io/badge/Qt-6.5%2B-41CD52?style=for-the-badge&logo=qt)
![C++23](https://img.shields.io/badge/C%2B%2B-23-00599C?style=for-the-badge&logo=cplusplus)
![CMake](https://img.shields.io/badge/CMake-3.20%2B-064F8C?style=for-the-badge&logo=cmake)
![UI Toolkit](https://img.shields.io/badge/Modern%20Qt-internal-8A2BE2?style=for-the-badge)
![TouchSensor Logo](images/logo.png)
## Highlights
- Modern, material-inspired desktop shell built on the in-repo `modern-qt` library.
- Modular component system (`NavComponent`, `ViewComponent`) for quick UI experiments.
- Real-time tactile matrix visualisation via the `HeatMapPlot` wrapper around QCustomPlot.
- Codec infrastructure (`components/ffmsep`) ready for custom tactile packet decoding.
- Serial transport module scaffolded for COM port discovery and streaming.
## Architecture At A Glance
- **Entry point**: `main.cc` composes the themed window, navigation rail, and card-based layout.
- **Components**: `components/` hosts UI widgets, charts, and the tactile decoder pipeline.
- **Modern Qt toolkit**: `modern-qt/` provides declarative wrappers, theming, and Material icon helpers.
- **Data layer**: `components/ffmsep` implements codec registration, packet decoding, and tactile frame processing.
- **Visualisation**: `components/charts/heatmap.*` exposes a themable heatmap control for sensor grids.
## Getting Started
### Prerequisites
- CMake 3.20+
- A C++23-capable compiler (MSVC 19.3x, Clang 16+, or GCC 13+)
- Qt 6 (Widgets, Network, PrintSupport modules)
- Eigen3
- `spdlog` (fetched via package manager or provided to CMake)
Ensure `Qt6_DIR` (or `CMAKE_PREFIX_PATH`) points to the Qt install so CMake can locate the required modules.
### Configure & Build
![](https://picgo-upload.cn-nb1.rains3.com/2025/10/407c29f139a834ed0f79a81347f810f1.png)
```powershell
pacman -Sy
pacman -S mingw-w64-x86_64-toolchain
pacman -S mingw64/mingw-w64-x86_64-qt6-base
pacman -S mingw-w64-x86_64-eigen3 mingw-w64-x86_64-yaml-cpp
mkdir build
cmake -G "MinGW Makefiles" -B build -DCMAKE_INSTALL_PREFIX="YOUR INSTALL PATH"
cd build && mingw32-make install
cat install_manifest.txt
```
To run from the build directory:
```powershell
.\touchsensor.exe
```
On Linux/macOS adjust the Qt path and executable name accordingly.
## Project Layout
```text
.
|-- components/
| |-- charts/ # QCustomPlot-based visualisations (heatmaps, etc.)
| |-- ffmsep/ # Codec system and tactile decoder experiments
| |-- view.cc # Main dashboard composition
| `-- ... # Additional UI widgets
|-- modern-qt/ # In-house declarative Qt UI framework
|-- serial/ # Serial communication helper library
|-- images/logo.png # Current app branding
|-- main.cc # Application bootstrap
`-- CMakeLists.txt # Build script (adds Qt, Eigen, Modern Qt, Serial, SPDLOG)
```
## Roadmap (WIP)
- Flesh out tactile codec implementations and connect them to live serial streams.
- Replace placeholder random data with decoded sensor frames.
- Expand navigation targets beyond the current demo cards.
- Capture screenshots or recordings for documentation.
- Polish theming, animation masks, and landing experience.
## Contributing
This repository is in active development; feel free to open issues or PRs once guidelines land. Until then, keep discussions in the project chat or issues board.
## Acknowledgements
- [Qt](https://www.qt.io/) for the core UI framework.
- [QCustomPlot](https://www.qcustomplot.com/) powering the heatmap widget.
- [spdlog](https://github.com/gabime/spdlog) for logging (wired via CMake).
- Internal **Modern Qt** toolkit built on top of creeper-qt utilities.

View File

@@ -5,12 +5,8 @@
#include "heatmap.hh"
#include "heatmap.impl.hh"
#include "qcustomplot/qcustomplot.h"
#include <qcolor.h>
#include <qcolormap.h>
#include <qcontainerfwd.h>
#include <qdebug.h>
#include <qnamespace.h>
#include <qobject.h>
#include <qsize.h>
using namespace creeper::plot_widget::internal;
@@ -21,32 +17,30 @@ BasicPlot::BasicPlot() : pimpl{std::make_unique<Impl>(*this)} {
setBackground(Qt::transparent);
}
BasicPlot::~BasicPlot() {}
BasicPlot::~BasicPlot() = default;
void BasicPlot::set_matrix_size(const QSize& size) {
qDebug() << "set matrix size" << size;
void BasicPlot::set_matrix_size(const QSize& size)const {
pimpl->set_matrix_size(size);
}
void BasicPlot::set_matrix_size(const int& w, const int& h) {
void BasicPlot::set_matrix_size(const int& w, const int& h)const {
QSize size(w, h);
qDebug() << "set matrix size" << size;
pimpl->set_matrix_size(size);
}
void BasicPlot::set_color_gradient_range(const double& min, const double& max) {
void BasicPlot::set_color_gradient_range(const double& min, const double& max)const {
pimpl->set_color_gradient_range(min, max);
}
void BasicPlot::set_xlabel_text(const QString& text) {
void BasicPlot::set_xlabel_text(const QString& text)const {
pimpl->set_xlabel_text(text);
}
void BasicPlot::set_ylabel_text(const QString& text) {
void BasicPlot::set_ylabel_text(const QString& text)const {
pimpl->set_ylabel_text(text);
}
void BasicPlot::load_theme_manager(ThemeManager& mgr) {
void BasicPlot::load_theme_manager(ThemeManager& mgr)const {
pimpl->load_theme_manager(mgr);
}
@@ -54,8 +48,7 @@ QSize BasicPlot::get_matrix_size() const {
return pimpl->get_matrix_size();
}
void BasicPlot::set_data(const QVector<PointData>& data) {
qDebug() << "set data" << data.size();
void BasicPlot::set_data(const QVector<PointData>& data)const {
pimpl->set_data(data);
}
@@ -63,7 +56,7 @@ bool BasicPlot::is_initialized() const {
return pimpl->is_plot_initialized();
}
void BasicPlot::init_plot() {
void BasicPlot::init_plot()const {
pimpl->initialize_plot();
}
@@ -75,17 +68,17 @@ void BasicPlot::paintEvent(QPaintEvent* event) {
QCustomPlot::paintEvent(event);
}
void BasicPlot::dataChanged(const QVector<PointData>& map) {
void BasicPlot::dataChanged(const QVector<PointData>& map)const {
set_data(map);
// emit dataChanged(map);
}
void BasicPlot::dataRangeChanged(const double& min, const double& max) {
void BasicPlot::dataRangeChanged(const double& min, const double& max)const {
set_color_gradient_range(min, max);
// emit dataRangeChanged(min, max);
}
void BasicPlot::update_dynamic_heatmap(const QVector<PointData>& map) {
void BasicPlot::update_dynamic_heatmap(const QVector<PointData>& map)const {
set_data(map);
}

View File

@@ -35,21 +35,21 @@ public:
// BasicPlot(const BasicPlot&) = delete;
// BasicPlot& operator=(const BasicPlot&) = delete;
void init_plot();
void load_theme_manager(ThemeManager&);
void set_xlabel_text(const QString&);
void set_ylabel_text(const QString&);
void set_matrix_size(const QSize&);
void set_matrix_size(const int& w, const int& h);
void set_data(const QVector<PointData>& data);
void set_color_gradient_range(const double& min, const double& max);
void init_plot()const;
void load_theme_manager(ThemeManager&)const;
void set_xlabel_text(const QString&)const;
void set_ylabel_text(const QString&)const;
void set_matrix_size(const QSize&)const;
void set_matrix_size(const int& w, const int& h)const;
void set_data(const QVector<PointData>& data)const;
void set_color_gradient_range(const double& min, const double& max)const;
QSize get_matrix_size() const;
bool is_initialized() const;
public slots:
void update_dynamic_heatmap(const QVector<PointData>& map);
void dataChanged(const QVector<PointData>& map);
void dataRangeChanged(const double& min, const double& max);
void update_dynamic_heatmap(const QVector<PointData>& map)const;
void dataChanged(const QVector<PointData>& map)const;
void dataRangeChanged(const double& min, const double& max)const;
protected:
void paintEvent(QPaintEvent*) override;

View File

@@ -75,7 +75,6 @@ public:
// 创建颜色映射
QCPColorMap* cpmp = new QCPColorMap(self.xAxis, self.yAxis);
qDebug() << "initialize_plot() size:" << matrix_size;
cpmp->data()->setSize(matrix_size.width(), matrix_size.height());
cpmp->data()->setRange(QCPRange(0.5, matrix_size.width() - 0.5),
QCPRange(0.5, matrix_size.height() - 0.5));

View File

@@ -1,226 +0,0 @@
//
// FFmpeg 风格编解码器注册表与上下文管理实现(中文注释版)。
// 注意:此实现大量使用 std::vector、std::optional 等现代 C++ 容器与 RAII 思想。
//
#include "cpdecoder.hh"
#include <algorithm> // 提供 std::find_if 等算法,用于查找与遍历
#include <mutex> // std::mutex + std::lock_guard保证注册表线程安全
namespace ffmsep {
namespace { // 匿名命名空间:限制辅助函数和静态变量作用域在当前编译单元
std::vector<const CPCodec*>& codec_registry() {
static std::vector<const CPCodec*> registry; // 使用静态局部变量 + vector 保留所有注册的编解码器
return registry;
}
std::mutex& registry_mutex() {
static std::mutex m; // 构建一个全局互斥量,用于守护注册表操作
return m;
}
void attach_codec(CPCodecContext* ctx, const CPCodec* codec) {
if (!ctx) {
return;
}
ctx->codec = codec;
if (!codec) {
ctx->codec_type = CPMediaType::Unknown;
ctx->priv_data = nullptr;
ctx->release_priv_storage();
return;
}
ctx->codec_type = codec->type;
ctx->priv_data = ctx->ensure_priv_storage(codec->priv_data_size);
}
bool codec_name_equals(const CPCodec* codec, std::string_view name) {
if (!codec || !codec->name) {
return false;
}
return std::string_view(codec->name) == name; // std::string_view 避免额外拷贝
}
} // namespace
void* CPCodecContext::ensure_priv_storage(std::size_t size) {
// 将 vector 当作动态缓冲区,确保大小满足编解码器私有数据需求
if (size == 0U) {
priv_storage.clear();
priv_data = nullptr;
return nullptr;
}
if (priv_storage.size() != size) {
priv_storage.assign(size, static_cast<std::uint8_t>(0));
}
priv_data = priv_storage.data();
return priv_data;
}
void CPCodecContext::release_priv_storage() noexcept {
// 与 ensure 配套,释放时直接清空 vector
priv_storage.clear();
priv_data = nullptr;
}
// 将单个编解码器指针注册到全局列表,重复注册时作安全检查。
void cpcodec_register(const CPCodec* codec) {
if (!codec || !codec->name) {
return;
}
std::lock_guard<std::mutex> lock(registry_mutex());
auto& reg = codec_registry();
auto already = std::find(reg.begin(), reg.end(), codec);
if (already != reg.end()) {
return;
}
auto same_id = std::find_if(reg.begin(), reg.end(), [codec](const CPCodec* entry) {
return entry && codec && entry->id == codec->id && codec->id != CPCodecID::Unknown;
});
if (same_id != reg.end()) {
*same_id = codec; // 如果 ID 已存在,则替换为新实现,以最新注册者为准
return;
}
reg.push_back(codec);
}
// 批量注册函数:利用 C++11 std::initializer_list 便捷传入多个指针。
void cpcodec_register_many(std::initializer_list<const CPCodec*> codecs) {
for (const CPCodec* codec : codecs) {
cpcodec_register(codec);
}
}
const CPCodec* cpcodec_find_decoder(CPCodecID id) {
std::lock_guard<std::mutex> lock(registry_mutex());
const auto& reg = codec_registry();
auto it = std::find_if(reg.begin(), reg.end(), [id](const CPCodec* codec) {
return codec && codec->id == id;
});
return it == reg.end() ? nullptr : *it; // 使用可空返回值:找不到时返回 nullptr
}
const CPCodec* cpcodec_find_decoder_by_name(std::string_view name) {
std::lock_guard<std::mutex> lock(registry_mutex());
const auto& reg = codec_registry();
auto it = std::find_if(reg.begin(), reg.end(), [name](const CPCodec* codec) {
return codec_name_equals(codec, name);
});
return it == reg.end() ? nullptr : *it;
}
std::vector<const CPCodec*> cpcodec_list_codecs() {
std::lock_guard<std::mutex> lock(registry_mutex());
return codec_registry(); // 返回当前注册表的浅拷贝
}
// 分配一个新的上下文,并可选绑定已有编解码器。
CPCodecContext* cpcodec_alloc_context3(const CPCodec* codec) {
auto* ctx = new CPCodecContext();
if (codec) {
attach_codec(ctx, codec);
}
return ctx;
}
// 打开上下文:允许调用方在此时指定(或替换)具体编解码器。
int cpcodec_open2(CPCodecContext* ctx, const CPCodec* codec) {
if (!ctx) {
return CP_ERROR_INVALID_ARGUMENT;
}
if (ctx->is_open) {
return CP_ERROR_INVALID_STATE;
}
if (codec) {
attach_codec(ctx, codec);
}
if (!ctx->codec) {
return CP_ERROR_INVALID_ARGUMENT;
}
ctx->is_open = true;
if (ctx->codec->init) {
int rc = ctx->codec->init(ctx);
if (rc < 0) {
ctx->is_open = false;
if (ctx->codec->close) {
ctx->codec->close(ctx); // 初始化失败时调用 close 进行善后
}
return rc;
}
}
return CP_SUCCESS;
}
// 关闭上下文:调用编解码器收尾逻辑并释放私有状态。
int cpcodec_close(CPCodecContext* ctx) {
if (!ctx) {
return CP_ERROR_INVALID_ARGUMENT;
}
if (!ctx->is_open) {
return CP_SUCCESS;
}
if (ctx->codec && ctx->codec->close) {
ctx->codec->close(ctx);
}
ctx->is_open = false;
ctx->release_priv_storage();
ctx->codec_type = CPMediaType::Unknown;
ctx->codec = nullptr;
ctx->priv_data = nullptr;
return CP_SUCCESS;
}
// 释放上下文指针,防止悬挂引用。
void cpcodec_free_context(CPCodecContext** ctx) {
if (!ctx || !*ctx) {
return;
}
cpcodec_close(*ctx);
delete *ctx;
*ctx = nullptr;
}
// 输入侧 API推送一帧串口数据内部队列通常会缓冲。
int cpcodec_send_packet(CPCodecContext* ctx, const CPPacket* packet) {
if (!ctx || !packet) {
return CP_ERROR_INVALID_ARGUMENT;
}
if (!ctx->is_open || !ctx->codec) {
return CP_ERROR_NOT_OPEN;
}
if (!ctx->codec->send_packet) {
return CP_ERROR_INVALID_STATE;
}
return ctx->codec->send_packet(ctx, *packet);
}
// 输出侧 API尝试从编解码器读取一帧解码结果。
int cpcodec_receive_frame(CPCodecContext* ctx, CPFrame* frame) {
if (!ctx || !frame) {
return CP_ERROR_INVALID_ARGUMENT;
}
if (!ctx->is_open || !ctx->codec) {
return CP_ERROR_NOT_OPEN;
}
if (!ctx->codec->receive_frame) {
return CP_ERROR_INVALID_STATE;
}
return ctx->codec->receive_frame(ctx, *frame);
}
} // namespace ffmsep

View File

@@ -1,141 +0,0 @@
//
// FFmpeg 风格的串口解码工具核心定义(带详细中文注释)。
// 说明:本文件使用了 C++17 引入的 std::optional可选值容器与 [[nodiscard]] 属性,
// 以及 C++11 的 std::initializer_list、基于 enum class 的强类型枚举,用于提高类型安全。
//
#pragma once
#include <cstdint> // 固定宽度整数类型,便于协议字段与位宽一致
#include <cstddef>
#include <mutex> // 互斥锁,用于注册表线程安全
#include <optional> // C++17 可选类型,用来表示可能为空的查找结果
#include <string>
#include <string_view> // C++17 字符串视图,避免不必要的拷贝
#include <vector>
#include <initializer_list> // C++11 可初始化列表,支持批量注册编解码器
namespace ffmsep { // 命名空间隔离所有与串口编解码相关的类型
// 错误码定义:参考 FFmpeg 的返回值约定,所有负数表示异常。
inline constexpr int CP_SUCCESS = 0; // 成功
inline constexpr int CP_ERROR_EOF = -1; // 流结束End Of File
inline constexpr int CP_ERROR_EAGAIN = -2; // 数据暂不可用,稍后重试
inline constexpr int CP_ERROR_NOT_OPEN = -3; // 编解码上下文尚未打开
inline constexpr int CP_ERROR_INVALID_STATE = -4; // 当前状态不允许该操作
inline constexpr int CP_ERROR_INVALID_ARGUMENT = -5;// 传入参数不合法
// enum class 使用 C++11 强类型枚举,避免隐式转换导致的错误。
enum class CPMediaType : std::uint8_t {
Unknown = 0, // 未知类型:默认值
Data, // 数据流(例如串口数据)
Audio, // 音频流(预留扩展)
Video // 视频流(预留扩展)
};
// 编解码器 ID用于在注册表中快速定位具体实现。
enum class CPCodecID : std::uint32_t {
Unknown = 0, // 未知或未设置
Tactile = 0x54514354u // 'T','Q','C','T':触觉传感器协议标识
};
// CPPacket 表示输入的“帧包”,与 FFmpeg 中 AVPacket 的思想类似。
struct CPPacket {
std::vector<std::uint8_t> payload; // 有效载荷:串口原始数据
std::int64_t pts = 0; // 显示时间戳presentation timestamp
std::int64_t dts = 0; // 解码时间戳decode timestamp
bool end_of_stream = false; // 标记此包是否为流结尾
bool flush = false; // 是否请求刷新内部状态(例如重置缓冲)
CPPacket() = default;
CPPacket(std::vector<std::uint8_t> data, std::int64_t pts_value = 0, std::int64_t dts_value = 0) noexcept
: payload(std::move(data)), pts(pts_value), dts(dts_value) {}
[[nodiscard]] bool empty() const noexcept { return payload.empty(); } // [[nodiscard]]
};
// CPFrame 表示解码后的数据帧,对应业务层可消费的实体。
struct CPFrame {
std::vector<std::uint8_t> data; // 解码后的数据内容
std::int64_t pts = 0; // 与输入包对应的时间戳
bool key_frame = false; // 是否为关键帧(例如起始帧)
bool valid = false; // 是否包含有效数据
void reset() noexcept {
data.clear();
pts = 0;
key_frame = false;
valid = false;
}
};
struct CPCodecContext;
// CPCodec 用函数指针描述具体编解码器的行为,等价于 FFmpeg 中的 AVCodec。
struct CPCodec {
using InitFn = int (*)(CPCodecContext*); // 初始化回调
using CloseFn = void (*)(CPCodecContext*); // 关闭回调
using SendPacketFn = int (*)(CPCodecContext*, const CPPacket&); // 发送输入包
using ReceiveFrameFn = int (*)(CPCodecContext*, CPFrame&); // 拉取输出帧
const char* name = nullptr;
const char* long_name = nullptr;
CPMediaType type = CPMediaType::Unknown;
CPCodecID id = CPCodecID::Unknown;
std::size_t priv_data_size = 0;
InitFn init = nullptr;
CloseFn close = nullptr;
SendPacketFn send_packet = nullptr;
ReceiveFrameFn receive_frame = nullptr;
};
struct CPCodecContext {
const CPCodec* codec = nullptr; // 指向当前使用的编解码器描述
void* priv_data = nullptr; // 指向编解码器私有状态(大小由 priv_data_size 控制)
CPMediaType codec_type = CPMediaType::Unknown; // 保存媒体类型,便于外部查询
bool is_open = false; // 是否已经成功调用 open
void clear() noexcept {
codec = nullptr;
priv_data = nullptr;
codec_type = CPMediaType::Unknown;
is_open = false;
priv_storage.clear();
}
void* ensure_priv_storage(std::size_t size); // 确保私有存储空间足够,不足时重新分配
void release_priv_storage() noexcept; // 释放私有存储
template <typename T>
[[nodiscard]] T* priv_as() noexcept {
return static_cast<T*>(priv_data);
}
template <typename T>
[[nodiscard]] const T* priv_as() const noexcept {
return static_cast<const T*>(priv_data);
}
private:
std::vector<std::uint8_t> priv_storage; // 私有缓冲区,使用 std::vector 管理生命周期
friend CPCodecContext* cpcodec_alloc_context3(const CPCodec*);
friend int cpcodec_open2(CPCodecContext*, const CPCodec*);
friend int cpcodec_close(CPCodecContext*);
};
// 注册接口:允许外部模块将编解码器加入全局列表。
void cpcodec_register(const CPCodec* codec);
void cpcodec_register_many(std::initializer_list<const CPCodec*> codecs);
const CPCodec* cpcodec_find_decoder(CPCodecID id);
const CPCodec* cpcodec_find_decoder_by_name(std::string_view name);
std::vector<const CPCodec*> cpcodec_list_codecs();
CPCodecContext* cpcodec_alloc_context3(const CPCodec* codec); // 分配上下文,关联指定编解码器
int cpcodec_open2(CPCodecContext* ctx, const CPCodec* codec = nullptr); // 打开上下文,可在此处指定或替换编解码器
int cpcodec_close(CPCodecContext* ctx); // 关闭上下文并释放资源
void cpcodec_free_context(CPCodecContext** ctx); // 释放上下文指针
int cpcodec_send_packet(CPCodecContext* ctx, const CPPacket* packet); // 推送一份待解码的数据包
int cpcodec_receive_frame(CPCodecContext* ctx, CPFrame* frame); // 拉取解码出来的帧
} // namespace ffmsep

View File

@@ -1,56 +0,0 @@
//
// 触觉传感器串口协议高层解析工具(中文注释版)。
// 注意:文件使用了 C++17 的 std::optional 与 inline constexpr
// 可提供编译期常量与安全的可空返回值。
//
#pragma once
#include "../cpdecoder.hh"
#include <cstdint> // 协议字段均以固定宽度字节表示
#include <optional> // std::optional可能解析失败时返回空
#include <vector>
namespace ffmsep::tactile {
inline constexpr std::uint8_t kStartByte = 0x3A; // 帧起始符(冒号)
inline constexpr std::uint8_t kEndByteFirst = 0x0D; // 帧结束符(回车)
inline constexpr std::uint8_t kEndByteSecond = 0x0A; // 帧结束符(换行)
// 功能码枚举:使用 enum class 提升类型安全,避免与其他数值混用。
enum class FunctionCode : std::uint8_t {
Unknown = 0x00, // 未知功能,解析失败或未初始化
ReadMatrix = 0x01, // 读取整块矩阵 AD 值
ReadSingle = 0x02, // 读取单点 AD 值
ReadTemperature = 0x03,// 读取温度数据
SetDeviceId = 0x51, // 修改设备编号
SetMatrixSize = 0x52, // 修改矩阵尺寸(长边/短边)
CalibrationMode = 0x53 // 进入校准模式
};
struct MatrixSize {
std::uint8_t long_edge = 0; // 矩阵长边尺寸
std::uint8_t short_edge = 0; // 矩阵短边尺寸
};
struct TactileFrame {
std::uint8_t device_address = 0; // 设备地址1~255
FunctionCode function = FunctionCode::Unknown; // 功能码
std::uint8_t data_length = 0; // 数据域长度
std::vector<std::uint8_t> payload; // 数据域内容(按协议解析)
};
// 将底层 CPFrame 解析为结构化的 TactileFrame。
std::optional<TactileFrame> parse_frame(const CPFrame& frame);
// 将数据域按小端 16 位压力值数组解析。
std::vector<std::uint16_t> parse_pressure_values(const TactileFrame& frame);
// 解析矩阵尺寸(用于读/写矩阵尺寸的命令)。
std::optional<MatrixSize> parse_matrix_size_payload(const TactileFrame& frame);
// 解析矩阵坐标(复用尺寸结构,分别表示长边/短边索引)。
std::optional<MatrixSize> parse_matrix_coordinate_payload(const TactileFrame& frame);
const CPCodec* tactile_codec();
void register_tactile_codec();
} // namespace ffmsep::tactile

View File

@@ -1,297 +0,0 @@
//
// 触觉传感器串口协议解码器实现(中文注释版)。
// 使用要点:
// 1. 通过循环缓冲累积串口字节,按起始/结束符重组完整帧;
// 2. 使用 C++17 std::vector/std::optional 管理内存与返回值;
// 3. placement new<new> 头文件)在已有内存上构造上下文对象。
//
#include "tacdec.h"
#include <algorithm> // std::find 等算法,用于搜索起始符
#include <cstddef>
#include <cstdint>
#include <new> // placement new在已分配内存上构造对象
namespace ffmsep::tactile { // 与头文件保持一致的命名空间层次
namespace { // 匿名命名空间,用于封装文件内部的工具常量与函数
constexpr std::size_t kMinimumFrameSize = 1 // start 起始符
+ 1 // address 设备地址
+ 1 // function 功能码
+ 1 // length 数据长度
+ 0 // payload 最短为 0
+ 2 // CRC 校验
+ 2; // end markers 结束符
constexpr std::uint16_t kCrcInitial = 0xFFFF; // CRC 初始值
constexpr std::uint16_t kCrcPolynomial = 0xA001; // CRC-16/MODBUS 多项式 (LSB-first)
// 解码器私有上下文,跟随 CPCodecContext 的 priv_data 生命周期。
struct TactileDecoderContext {
std::vector<std::uint8_t> fifo; // 环形缓冲,存储尚未解析的原始字节
bool end_of_stream = false; // 标记是否收到流结尾
std::int64_t next_pts = 0; // 输出帧的自增 pts
};
std::uint16_t crc16_modbus(const std::uint8_t* data, std::size_t length) {
std::uint16_t crc = kCrcInitial;
for (std::size_t i = 0; i < length; ++i) {
crc ^= static_cast<std::uint16_t>(data[i]);
for (int bit = 0; bit < 8; ++bit) {
if ((crc & 0x0001U) != 0U) {
crc = static_cast<std::uint16_t>((crc >> 1U) ^ kCrcPolynomial); // LSB 为 1 时异或多项式
} else {
crc = static_cast<std::uint16_t>(crc >> 1U); // 否则右移
}
}
}
return crc;
}
TactileDecoderContext* get_priv(CPCodecContext* ctx) {
return ctx ? ctx->priv_as<TactileDecoderContext>() : nullptr; // 使用模板封装的安全转换
}
int tactile_init(CPCodecContext* ctx) {
if (!ctx) {
return CP_ERROR_INVALID_ARGUMENT;
}
if (!ctx->priv_data) {
ctx->ensure_priv_storage(sizeof(TactileDecoderContext));
}
auto* storage = static_cast<TactileDecoderContext*>(ctx->priv_data);
new (storage) TactileDecoderContext(); // placement new在已分配的缓冲区中原地构造对象
return CP_SUCCESS;
}
void tactile_close(CPCodecContext* ctx) {
if (!ctx || !ctx->priv_data) {
return;
}
if (auto* priv = get_priv(ctx); priv != nullptr) {
priv->~TactileDecoderContext(); // 显式调用析构函数,释放内部 std::vector
}
}
int tactile_send_packet(CPCodecContext* ctx, const CPPacket& packet) {
auto* priv = get_priv(ctx);
if (!priv) {
return CP_ERROR_INVALID_STATE;
}
if (packet.flush) {
priv->fifo.clear(); // flush: 清除所有缓存,回到初始状态
priv->end_of_stream = false;
priv->next_pts = 0;
}
if (!packet.payload.empty()) {
priv->fifo.insert(priv->fifo.end(), packet.payload.begin(), packet.payload.end()); // 拼接新字节
}
if (packet.end_of_stream) {
priv->end_of_stream = true; // 标记输入源已结束
}
return CP_SUCCESS;
}
std::size_t frame_length_from_payload(std::uint8_t payload_length) {
return 1U + 1U + 1U + 1U + payload_length + 2U + 2U; // 计算完整帧总长度
}
const std::uint8_t* buffer_data(const std::vector<std::uint8_t>& buf) {
return buf.empty() ? nullptr : buf.data();
}
int tactile_receive_frame(CPCodecContext* ctx, CPFrame& frame) {
auto* priv = get_priv(ctx);
if (!priv) {
return CP_ERROR_INVALID_STATE;
}
auto& buf = priv->fifo;
while (true) {
if (buf.empty()) {
if (priv->end_of_stream) {
priv->end_of_stream = false;
return CP_ERROR_EOF; // 没有数据且流结束
}
return CP_ERROR_EAGAIN; // 告诉调用者需要更多数据
}
// Discard bytes until start byte is found.
auto start_it = std::find(buf.begin(), buf.end(), kStartByte);
if (start_it == buf.end()) {
buf.clear();
if (priv->end_of_stream) {
priv->end_of_stream = false;
return CP_ERROR_EOF;
}
return CP_ERROR_EAGAIN;
}
if (start_it != buf.begin()) {
buf.erase(buf.begin(), start_it); // 丢掉起始符前的噪声
}
if (buf.size() < kMinimumFrameSize) {
if (priv->end_of_stream) {
// Incomplete frame at end of stream: drop it and report EOF.
buf.clear();
priv->end_of_stream = false;
return CP_ERROR_EOF;
}
return CP_ERROR_EAGAIN; // 帧尚未完整,继续等待
}
const std::uint8_t* data = buffer_data(buf);
const std::uint8_t address = data[1];
const std::uint8_t function = data[2];
const std::uint8_t payload_length = data[3];
const std::size_t total_frame_length = frame_length_from_payload(payload_length); // 根据长度字段推算完整帧尺寸
if (buf.size() < total_frame_length) {
if (priv->end_of_stream) {
// Not enough data before stream end: treat as EOF and drop buffer.
buf.clear();
priv->end_of_stream = false;
return CP_ERROR_EOF;
}
return CP_ERROR_EAGAIN;
}
const std::size_t payload_offset = 4U;
const std::size_t crc_offset = payload_offset + payload_length;
const std::size_t end_offset = crc_offset + 2U; // CRC 后紧接 0x0D 0x0A
const std::uint8_t crc_lo = data[crc_offset];
const std::uint8_t crc_hi = data[crc_offset + 1U];
const std::uint16_t crc_value = static_cast<std::uint16_t>(crc_lo) |
static_cast<std::uint16_t>(crc_hi << 8U);
const std::uint8_t end_first = data[end_offset];
const std::uint8_t end_second = data[end_offset + 1U];
if (end_first != kEndByteFirst || end_second != kEndByteSecond) {
// Invalid end marker, drop start byte and retry.
buf.erase(buf.begin());
continue;
}
const std::size_t crc_region_length = 3U + payload_length; // address + function + length + payload
const std::uint16_t computed_crc = crc16_modbus(data + 1U, crc_region_length);
if (computed_crc != crc_value) {
buf.erase(buf.begin()); // CRC 校验失败,丢弃该起始符并重新同步
continue;
}
(void)address; // 当前实现仅检查 CRC不直接使用地址/功能码
(void)function;
frame.data.assign(buf.begin(), buf.begin() + static_cast<std::ptrdiff_t>(total_frame_length));
frame.pts = priv->next_pts++;
frame.key_frame = true;
frame.valid = true;
buf.erase(buf.begin(), buf.begin() + static_cast<std::ptrdiff_t>(total_frame_length)); // 移除已消费的内容
return CP_SUCCESS;
}
}
const CPCodec kTactileCodec {
"tactile_serial",
"Framed tactile sensor serial protocol decoder",
CPMediaType::Data,
CPCodecID::Tactile,
sizeof(TactileDecoderContext),
&tactile_init,
&tactile_close,
&tactile_send_packet,
&tactile_receive_frame
};
} // namespace
// 将底层 CPFrame 转换为协议专用的 TactileFrame失败时返回 std::nullopt。
std::optional<TactileFrame> parse_frame(const CPFrame& frame) {
if (!frame.valid || frame.data.size() < kMinimumFrameSize) {
return std::nullopt;
}
const auto* bytes = frame.data.data();
const std::size_t size = frame.data.size();
if (bytes[0] != kStartByte) {
return std::nullopt;
}
if (bytes[size - 2] != kEndByteFirst || bytes[size - 1] != kEndByteSecond) {
return std::nullopt;
}
if (size < 4U) {
return std::nullopt;
}
const std::uint8_t length = bytes[3];
if (frame_length_from_payload(length) != size) {
return std::nullopt;
}
const std::uint8_t address = bytes[1];
const FunctionCode function = static_cast<FunctionCode>(bytes[2]);
const std::size_t payload_offset = 4U;
TactileFrame parsed{};
parsed.device_address = address;
parsed.function = function;
parsed.data_length = length;
parsed.payload.assign(bytes + payload_offset, bytes + payload_offset + length);
return parsed;
}
// 将数据域按照小端排列的 16 位压力值序列解析为整数数组。
std::vector<std::uint16_t> parse_pressure_values(const TactileFrame& frame) {
if (frame.payload.empty() || (frame.payload.size() % 2U != 0U)) {
return {};
}
std::vector<std::uint16_t> values;
values.reserve(frame.payload.size() / 2U);
for (std::size_t idx = 0; idx + 1U < frame.payload.size(); idx += 2U) {
const std::uint16_t value = static_cast<std::uint16_t>(
static_cast<std::uint16_t>(frame.payload[idx]) |
static_cast<std::uint16_t>(frame.payload[idx + 1U] << 8U));
values.push_back(value);
}
return values;
}
// 解析矩阵尺寸载荷:两个字节分别为长边/短边。
std::optional<MatrixSize> parse_matrix_size_payload(const TactileFrame& frame) {
if (frame.payload.size() != 2U) {
return std::nullopt;
}
MatrixSize size{};
size.long_edge = frame.payload[0];
size.short_edge = frame.payload[1];
return size;
}
// 解析矩阵坐标:协议格式与尺寸一致,直接复用逻辑。
std::optional<MatrixSize> parse_matrix_coordinate_payload(const TactileFrame& frame) {
return parse_matrix_size_payload(frame);
}
// 提供对外查询:返回触觉协议对应的 CPCodec 描述。
const CPCodec* tactile_codec() {
return &kTactileCodec;
}
// 将触觉协议编解码器注册到全局列表,供 cpcodec_find_decoder 使用。
void register_tactile_codec() {
cpcodec_register(&kTactileCodec);
}
} // namespace ffmsep::tactile

View File

@@ -1,14 +1,14 @@
//
// Core FFmpeg-style codec registry and decoding helpers.
//
#include "cpdecoder.hh"
#include "components/ffmsep/cpdecoder.hh"
#include <algorithm>
#include <cstddef>
#include <initializer_list>
#include <mutex>
#include <string_view>
#include <vector>
namespace ffmsep {
namespace {
std::vector<const CPCodec*>& codec_registry() {
@@ -28,7 +28,7 @@ void attach_codec(CPCodecContext* ctx, const CPCodec* codec) {
ctx->codec = codec;
if (!codec) {
ctx->codec_type = CPMediaType::Unknown;
ctx->codec_type = CPMediaType::Data;
ctx->priv_data = nullptr;
ctx->release_priv_storage();
return;
@@ -42,11 +42,12 @@ bool codec_name_equals(const CPCodec* codec, std::string_view name) {
if (!codec || !codec->name) {
return false;
}
return std::string_view(codec->name) == name;
}
} // namespace
using namespace ffmsep;
void* CPCodecContext::ensure_priv_storage(std::size_t size) {
if (size == 0U) {
priv_storage.clear();
@@ -78,7 +79,7 @@ void cpcodec_register(const CPCodec* codec) {
}
auto same_id = std::find_if(reg.begin(), reg.end(), [codec](const CPCodec* entry) {
return entry && codec && entry->id == codec->id && codec->id != CPCodecID::Unknown;
return entry && codec && entry->id == codec->id && codec->id != CPCodecID::Unknow;
});
if (same_id != reg.end()) {
*same_id = codec;
@@ -109,6 +110,7 @@ const CPCodec* cpcodec_find_decoder_by_name(std::string_view name) {
auto it = std::find_if(reg.begin(), reg.end(), [name](const CPCodec* codec){
return codec_name_equals(codec, name);
});
return it ==reg.end() ? nullptr : *it;
}
@@ -117,15 +119,16 @@ std::vector<const CPCodec*> cpcodec_list_codecs() {
return codec_registry();
}
CPCodecContext* cpcodec_alloc_context3(const CPCodec* codec) {
CPCodecContext* cpcodec_alloc_context(const CPCodec* codec) {
auto* ctx = new CPCodecContext();
if (codec) {
attach_codec(ctx, codec);
}
return ctx;
}
int cpcodec_open2(CPCodecContext* ctx, const CPCodec* codec) {
int cpcodec_open(CPCodecContext* ctx, const CPCodec* codec) {
if (!ctx) {
return CP_ERROR_INVALID_ARGUMENT;
}
@@ -153,6 +156,7 @@ int cpcodec_open2(CPCodecContext* ctx, const CPCodec* codec) {
return rc;
}
}
return CP_SUCCESS;
}
@@ -169,9 +173,13 @@ int cpcodec_close(CPCodecContext* ctx) {
ctx->codec->close(ctx);
}
if (ctx->codec && ctx->codec->close) {
ctx->codec->close(ctx);
}
ctx->is_open = false;
ctx->release_priv_storage();
ctx->codec_type = CPMediaType::Unknown;
ctx->codec_type = CPMediaType::Unknow;
ctx->codec = nullptr;
ctx->priv_data = nullptr;
return CP_SUCCESS;
@@ -181,6 +189,7 @@ void cpcodec_free_context(CPCodecContext** ctx) {
if (!ctx || !*ctx) {
return;
}
cpcodec_close(*ctx);
delete *ctx;
*ctx = nullptr;
@@ -190,7 +199,7 @@ int cpcodec_send_packet(CPCodecContext* ctx, const CPPacket* packet) {
if (!ctx || !packet) {
return CP_ERROR_INVALID_ARGUMENT;
}
if (!ctx->is_open || !ctx->codec) {
if (!ctx || !ctx->codec) {
return CP_ERROR_NOT_OPEN;
}
if (!ctx->codec->send_packet) {
@@ -211,5 +220,4 @@ int cpcodec_receive_frame(CPCodecContext* ctx, CPFrame* frame) {
}
return ctx->codec->receive_frame(ctx, *frame);
}
} // namespace ffmsep
}

View File

@@ -1,9 +1,6 @@
//
// Simple FFmpeg-inspired serial decoding toolkit.
//
#pragma once
#include "components/ffmsep/cpdecoder.hh"
#include <cstdint>
#include <cstddef>
#include <mutex>
@@ -15,7 +12,6 @@
namespace ffmsep {
// Error codes loosely mirroring FFmpeg semantics.
inline constexpr int CP_SUCCESS = 0;
inline constexpr int CP_ERROR_EOF = -1;
inline constexpr int CP_ERROR_EAGAIN = -2;
@@ -24,15 +20,13 @@ inline constexpr int CP_ERROR_INVALID_STATE = -4;
inline constexpr int CP_ERROR_INVALID_ARGUMENT = -5;
enum class CPMediaType : std::uint8_t {
Unknown = 0,
Unknow = 0,
Data,
Audio,
Video
};
enum class CPCodecID : std::uint32_t {
Unknown = 0,
Tactile = 0x54514354u // 'T','Q','C','T' marker for tactile quick codec.
Unknow = 0,
Tactile = 0x54514354u // 'T','Q','C','T':触觉传感器协议标识 Tactile Quick Codec Type
};
struct CPPacket {
@@ -57,9 +51,9 @@ struct CPFrame {
void reset() noexcept {
data.clear();
pts = 0;
key_frame = false;
valid = false;
pts = 0;
}
};
@@ -73,8 +67,8 @@ struct CPCodec {
const char* name = nullptr;
const char* long_name = nullptr;
CPMediaType type = CPMediaType::Unknown;
CPCodecID id = CPCodecID::Unknown;
CPMediaType type = CPMediaType::Unknow;
CPCodecID id = CPCodecID::Unknow;
std::size_t priv_data_size = 0;
InitFn init = nullptr;
CloseFn close = nullptr;
@@ -85,13 +79,13 @@ struct CPCodec {
struct CPCodecContext {
const CPCodec* codec = nullptr;
void* priv_data = nullptr;
CPMediaType codec_type = CPMediaType::Unknown;
CPMediaType codec_type = CPMediaType::Unknow;
bool is_open = false;
void clear() noexcept {
codec = nullptr;
priv_data = nullptr;
codec_type = CPMediaType::Unknown;
codec_type = CPMediaType::Unknow;
is_open = false;
priv_storage.clear();
}
@@ -111,9 +105,8 @@ struct CPCodecContext {
private:
std::vector<std::uint8_t> priv_storage;
friend CPCodecContext* cpcodec_alloc_context3(const CPCodec*);
friend int cpcodec_open2(CPCodecContext*, const CPCodec*);
friend CPCodecContext* cpcodec_alloc_context(const CPCodec*);
friend int cpcodec_open(CPCodecContext*, const CPCodec*);
friend int cpcodec_close(CPCodecContext*);
};
@@ -123,11 +116,10 @@ const CPCodec* cpcodec_find_decoder(CPCodecID id);
const CPCodec* cpcodec_find_decoder_by_name(std::string_view name);
std::vector<const CPCodec*> cpcodec_list_codecs();
CPCodecContext* cpcodec_alloc_context3(const CPCodec* codec);
int cpcodec_open2(CPCodecContext* ctx, const CPCodec* codec = nullptr);
int cpcodec_close(CPCodecContext* ctx);
CPCodecContext* cpcodec_alloc_context(const CPCodec* codec);
int cpcodec_open(CPCodecContext*, const CPCodec*);
int cpcodec_close(CPCodecContext*);
void cpcodec_free_context(CPCodecContext **ctx);
int cpcodec_send_packet(CPCodecContext* ctx, const CPPacket* packet);
int cpcodec_receive_frame(CPCodecContext* ctx, CPFrame* frame);
} // namespace ffmsep
int cpcodec_send_packet(CPCodecContext*, const CPPacket*);
int cpcodec_receive_frame(CPCodecContext*, CPFrame*);
}

View File

@@ -0,0 +1,627 @@
#include "components/ffmsep/cpstream_core.hh"
#include <algorithm>
#include <atomic>
#include <chrono>
#include <condition_variable>
#include <cstddef>
#include <cstdint>
#include <deque>
#include <memory>
#include <mutex>
#include <optional>
#include <thread>
#include <utility>
#include <vector>
namespace ffmsep {
namespace {
constexpr auto kReaderIdleSleep = std::chrono::milliseconds(5);
constexpr auto kDecoderIdleSleep = std::chrono::milliseconds(1);
const CPCodec* resolve_requested_codec(const CPStreamConfig& config) {
if (!config.codec_name.empty()) {
if (const CPCodec* codec = cpcodec_find_decoder_by_name(config.codec_name)) {
return codec;
}
}
if (config.codec_id != CPCodecID::Unknow) {
if (const CPCodec* codec = cpcodec_find_decoder(config.codec_id)) {
return codec;
}
}
return nullptr;
}
} // namespace
struct CPStreamCore::Impl {
struct Packet {
std::vector<std::uint8_t> payload;
std::int64_t pts = 0;
bool end_of_stream = false;
bool flush = false;
};
explicit Impl(CPStreamConfig config)
: config_(std::move(config)) {
normalize_config();
}
~Impl() = default;
void normalize_config() {
if (config_.read_chunk_size == 0U) {
config_.read_chunk_size = 256U;
}
if (config_.packet_queue_capacity == 0U) {
config_.packet_queue_capacity = 1U;
}
if (config_.frame_queue_capacity == 0U) {
config_.frame_queue_capacity = 1U;
}
frame_queue_capacity_ = config_.frame_queue_capacity;
}
bool open(const CPStreamConfig& cfg) {
stop();
close();
config_ = cfg;
normalize_config();
if (config_.port.empty()) {
set_last_error("serial port is empty");
return false;
}
codec_descriptor_ = resolve_requested_codec(config_);
if (!codec_descriptor_) {
set_last_error("codec not found for requested identifier");
return false;
}
codec_ctx_ = cpcodec_alloc_context(codec_descriptor_);
if (!codec_ctx_) {
set_last_error("failed to allocate codec context");
return false;
}
int rc = cpcodec_open(codec_ctx_, codec_descriptor_);
if (rc < CP_SUCCESS) {
set_last_error("failed to open codec context: error " + std::to_string(rc));
cpcodec_free_context(&codec_ctx_);
codec_ctx_ = nullptr;
return false;
}
try {
auto serial = std::make_shared<serial::Serial>(
config_.port,
config_.baudrate,
config_.timeout,
config_.bytesize,
config_.parity,
config_.stopbits,
config_.flowcontrol);
serial->open();
serial->flush();
{
std::lock_guard lock(serial_mutex_);
serial_ = std::move(serial);
}
} catch (const serial::IOException& ex) {
set_last_error(ex.what() ? ex.what() : "serial IO exception");
cpcodec_close(codec_ctx_);
cpcodec_free_context(&codec_ctx_);
codec_ctx_ = nullptr;
return false;
} catch (const serial::SerialException& ex) {
set_last_error(ex.what() ? ex.what() : "serial exception");
cpcodec_close(codec_ctx_);
cpcodec_free_context(&codec_ctx_);
codec_ctx_ = nullptr;
return false;
} catch (const std::exception& ex) {
set_last_error(ex.what());
cpcodec_close(codec_ctx_);
cpcodec_free_context(&codec_ctx_);
codec_ctx_ = nullptr;
return false;
}
{
std::lock_guard lock(packet_mutex_);
packet_queue_.clear();
}
{
std::lock_guard lock(frame_mutex_);
frame_queue_.clear();
}
pts_counter_.store(0, std::memory_order_relaxed);
stop_requested_.store(false, std::memory_order_release);
set_last_error({});
return true;
}
bool open() {
return open(config_);
}
bool reopen(const CPStreamConfig& cfg) {
return open(cfg);
}
void close() {
stop();
{
std::lock_guard lock(serial_mutex_);
if (serial_) {
try {
if (serial_->isOpen()) {
serial_->close();
}
} catch (...) {
// Ignore close errors.
}
serial_.reset();
}
}
if (codec_ctx_) {
cpcodec_close(codec_ctx_);
cpcodec_free_context(&codec_ctx_);
codec_ctx_ = nullptr;
}
{
std::lock_guard lock(packet_mutex_);
packet_queue_.clear();
}
{
std::lock_guard lock(frame_mutex_);
frame_queue_.clear();
}
}
bool start() {
if (running_.load(std::memory_order_acquire)) {
return true;
}
std::shared_ptr<serial::Serial> serial_copy;
{
std::lock_guard lock(serial_mutex_);
serial_copy = serial_;
}
if (!serial_copy || !serial_copy->isOpen()) {
set_last_error("serial port is not open");
return false;
}
if (!codec_ctx_ || !codec_ctx_->is_open) {
set_last_error("codec context is not ready");
return false;
}
stop_requested_.store(false, std::memory_order_release);
running_.store(true, std::memory_order_release);
reader_thread_ = std::thread(&Impl::reader_loop, this);
decoder_thread_ = std::thread(&Impl::decoder_loop, this);
return true;
}
void stop() {
if (!running_.exchange(false, std::memory_order_acq_rel)) {
return;
}
stop_requested_.store(true, std::memory_order_release);
packet_cv_.notify_all();
if (reader_thread_.joinable()) {
reader_thread_.join();
}
signal_decoder_flush(true);
packet_cv_.notify_all();
if (decoder_thread_.joinable()) {
decoder_thread_.join();
}
stop_requested_.store(false, std::memory_order_release);
{
std::lock_guard lock(packet_mutex_);
packet_queue_.clear();
}
if (codec_ctx_ && codec_ctx_->is_open) {
reset_decoder();
}
}
bool is_open() const {
std::lock_guard lock(serial_mutex_);
return serial_ && serial_->isOpen();
}
bool is_running() const {
return running_.load(std::memory_order_acquire);
}
bool send(const std::vector<std::uint8_t>& data) {
return send(data.data(), data.size());
}
bool send(const std::uint8_t* data, std::size_t size) {
if (!data || size == 0U) {
return false;
}
std::shared_ptr<serial::Serial> serial_copy;
{
std::lock_guard lock(serial_mutex_);
serial_copy = serial_;
}
if (!serial_copy || !serial_copy->isOpen()) {
set_last_error("serial port is not open");
return false;
}
try {
const auto written = serial_copy->write(data, size);
return written == size;
} catch (const serial::IOException& ex) {
set_last_error(ex.what() ? ex.what() : "serial IO exception");
} catch (const serial::SerialException& ex) {
set_last_error(ex.what() ? ex.what() : "serial exception");
} catch (const std::exception& ex) {
set_last_error(ex.what());
}
return false;
}
std::optional<DecodedFrame> try_pop_frame() {
std::lock_guard lock(frame_mutex_);
if (frame_queue_.empty()) {
return std::nullopt;
}
DecodedFrame frame = std::move(frame_queue_.front());
frame_queue_.pop_front();
return frame;
}
bool wait_for_frame(DecodedFrame& frame, std::chrono::milliseconds timeout) {
std::unique_lock lock(frame_mutex_);
if (!frame_cv_.wait_for(lock, timeout, [&] {
return !frame_queue_.empty();
})) {
return false;
}
frame = std::move(frame_queue_.front());
frame_queue_.pop_front();
return true;
}
void clear_frames() {
std::lock_guard lock(frame_mutex_);
frame_queue_.clear();
}
void set_frame_queue_capacity(std::size_t capacity) {
if (capacity == 0U) {
capacity = 1U;
}
{
std::lock_guard lock(frame_mutex_);
frame_queue_capacity_ = capacity;
config_.frame_queue_capacity = capacity;
while (frame_queue_.size() > frame_queue_capacity_) {
frame_queue_.pop_front();
}
}
}
void set_frame_callback(FrameCallback callback) {
std::lock_guard lock(callback_mutex_);
frame_callback_ = std::move(callback);
}
CPStreamConfig config() const {
return config_;
}
std::string last_error() const {
std::lock_guard lock(last_error_mutex_);
return last_error_;
}
static std::vector<serial::PortInfo> list_ports() {
return serial::list_ports();
}
void reader_loop() {
std::vector<std::uint8_t> buffer(config_.read_chunk_size);
while (!stop_requested_.load(std::memory_order_acquire)) {
std::shared_ptr<serial::Serial> serial_copy;
{
std::lock_guard lock(serial_mutex_);
serial_copy = serial_;
}
if (!serial_copy || !serial_copy->isOpen()) {
std::this_thread::sleep_for(kReaderIdleSleep);
continue;
}
std::size_t bytes_read = 0;
try {
bytes_read = serial_copy->read(buffer.data(), buffer.size());
} catch (const serial::IOException& ex) {
set_last_error(ex.what() ? ex.what() : "serial IO exception");
std::this_thread::sleep_for(kReaderIdleSleep);
continue;
} catch (const serial::SerialException& ex) {
set_last_error(ex.what() ? ex.what() : "serial exception");
std::this_thread::sleep_for(kReaderIdleSleep);
continue;
} catch (const std::exception& ex) {
set_last_error(ex.what());
std::this_thread::sleep_for(kReaderIdleSleep);
continue;
}
if (bytes_read == 0U) {
std::this_thread::sleep_for(kReaderIdleSleep);
continue;
}
Packet packet;
packet.payload.assign(buffer.begin(), buffer.begin() + static_cast<std::ptrdiff_t>(bytes_read));
packet.pts = pts_counter_.fetch_add(1, std::memory_order_relaxed);
{
std::lock_guard lock(packet_mutex_);
if (packet_queue_.size() >= config_.packet_queue_capacity) {
packet_queue_.pop_front();
}
packet_queue_.push_back(std::move(packet));
}
packet_cv_.notify_one();
}
}
void decoder_loop() {
while (true) {
Packet packet;
{
std::unique_lock lock(packet_mutex_);
packet_cv_.wait(lock, [&] {
return stop_requested_.load(std::memory_order_acquire) || !packet_queue_.empty();
});
if (packet_queue_.empty()) {
if (stop_requested_.load(std::memory_order_acquire)) {
break;
}
continue;
}
packet = std::move(packet_queue_.front());
packet_queue_.pop_front();
}
if (!codec_ctx_ || !codec_ctx_->is_open) {
if (packet.end_of_stream) {
break;
}
std::this_thread::sleep_for(kDecoderIdleSleep);
continue;
}
CPPacket cp_packet;
cp_packet.payload = std::move(packet.payload);
cp_packet.pts = packet.pts;
cp_packet.dts = packet.pts;
cp_packet.end_of_stream = packet.end_of_stream;
cp_packet.flush = packet.flush;
int rc = cpcodec_send_packet(codec_ctx_, &cp_packet);
if (rc < CP_SUCCESS) {
if (packet.end_of_stream) {
break;
}
continue;
}
while (true) {
CPFrame frame;
rc = cpcodec_receive_frame(codec_ctx_, &frame);
if (rc == CP_SUCCESS) {
DecodedFrame decoded;
decoded.pts = frame.pts;
decoded.received_at = std::chrono::steady_clock::now();
decoded.frame = std::move(frame);
FrameCallback callback_copy;
{
std::lock_guard lock(callback_mutex_);
callback_copy = frame_callback_;
}
if (callback_copy) {
callback_copy(decoded);
}
{
std::lock_guard lock(frame_mutex_);
if (frame_queue_.size() >= frame_queue_capacity_) {
frame_queue_.pop_front();
}
frame_queue_.push_back(std::move(decoded));
}
frame_cv_.notify_one();
} else if (rc == CP_ERROR_EAGAIN) {
break;
} else {
if (rc == CP_ERROR_EOF && packet.end_of_stream) {
return;
}
break;
}
}
if (packet.end_of_stream) {
break;
}
}
}
void signal_decoder_flush(bool end_of_stream) {
Packet packet;
packet.flush = true;
packet.end_of_stream = end_of_stream;
{
std::lock_guard lock(packet_mutex_);
packet_queue_.push_back(std::move(packet));
}
packet_cv_.notify_one();
}
void reset_decoder() {
if (!codec_ctx_ || !codec_descriptor_) {
return;
}
cpcodec_close(codec_ctx_);
int rc = cpcodec_open(codec_ctx_, codec_descriptor_);
if (rc < CP_SUCCESS) {
set_last_error("failed to reset codec context: error " + std::to_string(rc));
}
}
void set_last_error(std::string message) {
std::lock_guard lock(last_error_mutex_);
last_error_ = std::move(message);
}
CPStreamConfig config_{};
const CPCodec* codec_descriptor_ = nullptr;
std::shared_ptr<serial::Serial> serial_;
mutable std::mutex serial_mutex_;
CPCodecContext* codec_ctx_ = nullptr;
std::thread reader_thread_;
std::thread decoder_thread_;
std::mutex packet_mutex_;
std::condition_variable packet_cv_;
std::deque<Packet> packet_queue_;
std::mutex frame_mutex_;
std::condition_variable frame_cv_;
std::deque<DecodedFrame> frame_queue_;
std::size_t frame_queue_capacity_ = 16;
FrameCallback frame_callback_;
mutable std::mutex callback_mutex_;
std::atomic<bool> running_{false};
std::atomic<bool> stop_requested_{false};
std::atomic<std::int64_t> pts_counter_{0};
std::string last_error_;
mutable std::mutex last_error_mutex_;
};
CPStreamCore::CPStreamCore(CPStreamConfig config)
: impl_(std::make_unique<Impl>(std::move(config))) {}
CPStreamCore::~CPStreamCore() {
if (impl_) {
impl_->stop();
impl_->close();
}
}
bool CPStreamCore::open(const CPStreamConfig& config) {
return impl_->open(config);
}
bool CPStreamCore::open() {
return impl_->open();
}
bool CPStreamCore::reopen(const CPStreamConfig& config) {
return impl_->reopen(config);
}
void CPStreamCore::close() {
impl_->close();
}
bool CPStreamCore::start() {
return impl_->start();
}
void CPStreamCore::stop() {
impl_->stop();
}
bool CPStreamCore::is_open() const noexcept {
return impl_->is_open();
}
bool CPStreamCore::is_running() const noexcept {
return impl_->is_running();
}
bool CPStreamCore::send(const std::vector<std::uint8_t>& data) {
return impl_->send(data);
}
bool CPStreamCore::send(const std::uint8_t* data, std::size_t size) {
return impl_->send(data, size);
}
std::optional<DecodedFrame> CPStreamCore::try_pop_frame() {
return impl_->try_pop_frame();
}
bool CPStreamCore::wait_for_frame(DecodedFrame& frame, std::chrono::milliseconds timeout) {
return impl_->wait_for_frame(frame, timeout);
}
void CPStreamCore::clear_frames() {
impl_->clear_frames();
}
void CPStreamCore::set_frame_queue_capacity(std::size_t capacity) {
impl_->set_frame_queue_capacity(capacity);
}
void CPStreamCore::set_frame_callback(FrameCallback callback) {
impl_->set_frame_callback(std::move(callback));
}
CPStreamConfig CPStreamCore::config() const {
return impl_->config();
}
std::string CPStreamCore::last_error() const {
return impl_->last_error();
}
std::vector<serial::PortInfo> CPStreamCore::list_available_ports() {
return Impl::list_ports();
}
} // namespace ffmsep

View File

@@ -0,0 +1,77 @@
#pragma once
#include "components/ffmsep/cpdecoder.hh"
#include <chrono>
#include <cstdint>
#include <functional>
#include <memory>
#include <optional>
#include <serial/serial.h>
#include <string>
#include <vector>
namespace ffmsep {
struct DecodedFrame {
CPFrame frame;
std::chrono::steady_clock::time_point received_at{};
std::int64_t pts = 0;
};
struct CPStreamConfig {
std::string port;
std::uint32_t baudrate = 115200;
serial::Timeout timeout = serial::Timeout::simpleTimeout(50);
serial::bytesize_t bytesize = serial::eightbits;
serial::parity_t parity = serial::parity_none;
serial::stopbits_t stopbits = serial::stopbits_one;
serial::flowcontrol_t flowcontrol = serial::flowcontrol_none;
std::size_t read_chunk_size = 256;
std::size_t packet_queue_capacity = 128;
std::size_t frame_queue_capacity = 16;
CPCodecID codec_id = CPCodecID::Unknow;
std::string codec_name;
};
class CPStreamCore {
public:
using FrameCallback = std::function<void(const DecodedFrame&)>;
explicit CPStreamCore(CPStreamConfig config = {});
~CPStreamCore();
CPStreamCore(const CPStreamCore&) = delete;
CPStreamCore& operator=(const CPStreamCore&) = delete;
bool open(const CPStreamConfig& config);
bool open();
bool reopen(const CPStreamConfig& config);
void close();
bool start();
void stop();
[[nodiscard]] bool is_open() const noexcept;
[[nodiscard]] bool is_running() const noexcept;
bool send(const std::vector<std::uint8_t>& data);
bool send(const std::uint8_t* data, std::size_t size);
std::optional<DecodedFrame> try_pop_frame();
bool wait_for_frame(DecodedFrame& frame, std::chrono::milliseconds timeout);
void clear_frames();
void set_frame_queue_capacity(std::size_t capacity);
void set_frame_callback(FrameCallback callback);
[[nodiscard]] CPStreamConfig config() const;
[[nodiscard]] std::string last_error() const;
static std::vector<serial::PortInfo> list_available_ports();
private:
struct Impl;
std::unique_ptr<Impl> impl_;
};
} // namespace ffmsep

View File

@@ -1,28 +1,25 @@
//
// Decoder for the tactile sensor framed binary protocol.
//
#include "tacdec.h"
#include "tacdec.hh"
#include "components/ffmsep/cpdecoder.hh"
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <new>
#include <optional>
#include <vector>
namespace ffmsep::tactile {
namespace {
constexpr std::size_t kMinimumFrameSize = 1 // start
+ 1 // address
+ 1 // function
+ 1 // length
+ 0 // payload
+ 2 // CRC
+ 2; // end markers
constexpr std::size_t kMinimumFrameSize = 1
+ 1
+ 1
+ 1
+ 0
+ 2
+ 2;
constexpr std::uint16_t kCrcInitial = 0xFFFF;
constexpr std::uint16_t kCrcPolynomial = 0xA001; // CRC-16/MODBUS (LSB first)
constexpr std::uint16_t kCrcPolynomial = 0xA001;
struct TactileDecoderContext {
std::vector<std::uint8_t> fifo;
@@ -30,6 +27,14 @@ struct TactileDecoderContext {
std::int64_t next_pts = 0;
};
std::size_t frame_length_from_payload(std::uint8_t payload_length) {
return 1U + 1U + 1U + 1U + payload_length + 2U + 2U;
}
const std::uint8_t* buffer_data(const std::vector<std::uint8_t>& buf) {
return buf.empty() ? nullptr : buf.data();
}
std::uint16_t crc16_modbus(const std::uint8_t* data, std::size_t length) {
std::uint16_t crc = kCrcInitial;
for (std::size_t i = 0; i < length; ++i) {
@@ -37,7 +42,8 @@ std::uint16_t crc16_modbus(const std::uint8_t* data, std::size_t length) {
for (int bit = 0; bit < 8; ++bit) {
if ((crc & 0x0001U) != 0U) {
crc = static_cast<std::uint16_t>((crc >> 1U) ^ kCrcPolynomial);
} else {
}
else {
crc = static_cast<std::uint16_t>(crc >> 1U);
}
}
@@ -71,11 +77,10 @@ void tactile_close(CPCodecContext* ctx) {
}
int tactile_send_packet(CPCodecContext* ctx, const CPPacket& packet) {
auto* priv = get_priv(ctx);
auto priv = get_priv(ctx);
if (!priv) {
return CP_ERROR_INVALID_STATE;
}
if (packet.flush) {
priv->fifo.clear();
priv->end_of_stream = false;
@@ -93,14 +98,6 @@ int tactile_send_packet(CPCodecContext* ctx, const CPPacket& packet) {
return CP_SUCCESS;
}
std::size_t frame_length_from_payload(std::uint8_t payload_length) {
return 1U + 1U + 1U + 1U + payload_length + 2U + 2U;
}
const std::uint8_t* buffer_data(const std::vector<std::uint8_t>& buf) {
return buf.empty() ? nullptr : buf.data();
}
int tactile_receive_frame(CPCodecContext* ctx, CPFrame& frame) {
auto* priv = get_priv(ctx);
if (!priv) {
@@ -118,7 +115,6 @@ int tactile_receive_frame(CPCodecContext* ctx, CPFrame& frame) {
return CP_ERROR_EAGAIN;
}
// Discard bytes until start byte is found.
auto start_it = std::find(buf.begin(), buf.end(), kStartByte);
if (start_it == buf.end()) {
buf.clear();
@@ -128,13 +124,13 @@ int tactile_receive_frame(CPCodecContext* ctx, CPFrame& frame) {
}
return CP_ERROR_EAGAIN;
}
if (start_it != buf.begin()) {
buf.erase(buf.begin(), start_it);
}
if (buf.size() < kMinimumFrameSize) {
if (priv->end_of_stream) {
// Incomplete frame at end of stream: drop it and report EOF.
buf.clear();
priv->end_of_stream = false;
return CP_ERROR_EOF;
@@ -143,14 +139,13 @@ int tactile_receive_frame(CPCodecContext* ctx, CPFrame& frame) {
}
const std::uint8_t* data = buffer_data(buf);
const std::uint8_t address = data[1];
const std::uint8_t function = data[2];
const std::uint8_t payload_length = data[3];
const std::uint8_t address = data[1U];
const FunctionCode function = static_cast<FunctionCode>(data[2U]);
const std::uint8_t payload_length = data[3U];
const std::size_t total_frame_length = frame_length_from_payload(payload_length);
if (buf.size() < total_frame_length) {
if (priv->end_of_stream) {
// Not enough data before stream end: treat as EOF and drop buffer.
buf.clear();
priv->end_of_stream = false;
return CP_ERROR_EOF;
@@ -171,12 +166,11 @@ int tactile_receive_frame(CPCodecContext* ctx, CPFrame& frame) {
const std::uint8_t end_second = data[end_offset + 1U];
if (end_first != kEndByteFirst || end_second != kEndByteSecond) {
// Invalid end marker, drop start byte and retry.
buf.erase(buf.begin());
continue;
}
const std::size_t crc_region_length = 3U + payload_length; // address + function + length + payload
const std::size_t crc_region_length = 3U + payload_length;
const std::uint16_t computed_crc = crc16_modbus(data + 1U, crc_region_length);
if (computed_crc != crc_value) {
buf.erase(buf.begin());
@@ -192,24 +186,22 @@ int tactile_receive_frame(CPCodecContext* ctx, CPFrame& frame) {
frame.valid = true;
buf.erase(buf.begin(), buf.begin() + static_cast<std::ptrdiff_t>(total_frame_length));
return CP_SUCCESS;
}
}
const CPCodec kTactileCodec {
"tactile_serial",
"Framed tactile sensor serial protocol decoder",
CPMediaType::Data,
CPCodecID::Tactile,
sizeof(TactileDecoderContext),
&tactile_init,
&tactile_close,
&tactile_send_packet,
&tactile_receive_frame
.name = "tactile_serial",
.long_name = "Framed tactile sensor serial protocol decoder",
.type = CPMediaType::Data,
.id = CPCodecID::Tactile,
.priv_data_size = sizeof(TactileDecoderContext),
.init = &tactile_init,
.close = &tactile_close,
.send_packet = &tactile_send_packet,
.receive_frame = &tactile_receive_frame
};
} // namespace
}
std::optional<TactileFrame> parse_frame(const CPFrame& frame) {
if (!frame.valid || frame.data.size() < kMinimumFrameSize) {
@@ -221,6 +213,7 @@ std::optional<TactileFrame> parse_frame(const CPFrame& frame) {
if (bytes[0] != kStartByte) {
return std::nullopt;
}
if (bytes[size - 2] != kEndByteFirst || bytes[size - 1] != kEndByteSecond) {
return std::nullopt;
}
@@ -233,7 +226,6 @@ std::optional<TactileFrame> parse_frame(const CPFrame& frame) {
if (frame_length_from_payload(length) != size) {
return std::nullopt;
}
const std::uint8_t address = bytes[1];
const FunctionCode function = static_cast<FunctionCode>(bytes[2]);
const std::size_t payload_offset = 4U;
@@ -271,10 +263,6 @@ std::optional<MatrixSize> parse_matrix_size_payload(const TactileFrame& frame) {
return size;
}
std::optional<MatrixSize> parse_matrix_coordinate_payload(const TactileFrame& frame) {
return parse_matrix_size_payload(frame);
}
const CPCodec* tactile_codec() {
return &kTactileCodec;
}
@@ -282,5 +270,4 @@ const CPCodec* tactile_codec() {
void register_tactile_codec() {
cpcodec_register(&kTactileCodec);
}
} // namespace ffmsep::tactile
}

View File

@@ -1,17 +1,11 @@
//
// High level helpers for the tactile sensor binary protocol.
//
#pragma once
#include "../cpdecoder.hh"
#include "cpdecoder.hh"
#include <cstdint>
#include <optional>
#include <vector>
namespace ffmsep::tactile {
inline constexpr std::uint8_t kStartByte = 0x3A;
inline constexpr std::uint8_t kEndByteFirst = 0x0D;
inline constexpr std::uint8_t kEndByteSecond = 0x0A;
@@ -23,7 +17,7 @@ enum class FunctionCode : std::uint8_t {
ReadTemperature = 0x03,
SetDeviceId = 0x51,
SetMatrixSize = 0x52,
CalibrationMode = 0x53
CalibrationMode = 0x53,
};
struct MatrixSize {
@@ -41,9 +35,8 @@ struct TactileFrame {
std::optional<TactileFrame> parse_frame(const CPFrame& frame);
std::vector<std::uint16_t> parse_pressure_values(const TactileFrame& frame);
std::optional<MatrixSize> parse_matrix_size_payload(const TactileFrame& frame);
std::optional<MatrixSize> parse_matrix_coordinate_payload(const TactileFrame& frame);
std::optional<MatrixSize> parse_patrix_coordinate_payload(const TactileFrame& frame);
const CPCodec* tactile_codec();
void register_tactile_codec();
} // namespace ffmsep::tactile
}

View File

@@ -70,24 +70,17 @@ static auto ComConfigComponent(ThemeManager& manager, auto&& callback) {
slpro::LeadingIcon { material::icon::kArrowDropDown, material::regular::font},
slpro::IndexChanged {[&](auto& self){ qDebug() << self.currentIndex();}},
slpro::LeadingText {"Baud"},
// slpro::MutableItems {select_baud_context},
MutableForward {
slpro::SelectItems {},
select_baud_context,
}
},
// lnpro::Item<MatSelect> {
// // slpro::ThemeManager {manager},
// // slpro::LeadingIcon {material::icon::kArrowDropDown, material::regular::font},
// // slpro::IndexChanged {}
// // }
lnpro::SpacingItem {20},
lnpro::Item<IconButton> {
ibpro::ThemeManager {manager},
ibpro::FixedSize {40, 40},
ibpro::Color { IconButton::Color::TONAL },
ibpro::Font { material::kRoundSmallFont },
// ibpro::FontIcon { material::icon::kFavorite },
ibpro::FontIcon { material::icon::kAddLink },
ibpro::Clickable {[slogen_context] {
constexpr auto random_slogen = [] {
@@ -113,7 +106,7 @@ static auto ComConfigComponent(ThemeManager& manager, auto&& callback) {
ibpro::Font { material::kRoundSmallFont },
ibpro::FontIcon { material::icon::kRefresh },
ibpro::Clickable {[select_baud_context] {
// 定义两组不同的选项
static constexpr auto options_group1 = std::array {
"第一组选项1", "第一组选项2", "第一组选项3"
};
@@ -121,7 +114,6 @@ static auto ComConfigComponent(ThemeManager& manager, auto&& callback) {
"第二组选项A", "第二组选项B", "第二组选项C", "第二组选项D"
};
// 随机选择一组选项
static std::random_device rd;
static std::mt19937 gen(rd());
std::uniform_int_distribution<> dist(0, 1);
@@ -136,9 +128,6 @@ static auto ComConfigComponent(ThemeManager& manager, auto&& callback) {
new_options << QString::fromUtf8(option);
}
}
qDebug() << new_options;
// 更新选项列表MatSelect会自动刷新
*select_baud_context = new_options;
}},
},

40
dlog/dlog.cc Normal file
View File

@@ -0,0 +1,40 @@
//
// Created by Lenn on 2025/10/23.
//
#include "dlog.hh"
spdlog::level::level_enum DLog::level_ = spdlog::level::info;
void DLog::set_level(DLogLevel level) {
printf("SetLevel log_level:%d\n", level);
fflush(stdout);
switch (level)
{
case DLogLevel::TRACE:
level_ = spdlog::level::trace;
break;
case DLogLevel::DEBUG:
level_ = spdlog::level::debug;
break;
case DLogLevel::INFO:
level_ = spdlog::level::info;
break;
case DLogLevel::WARN:
level_ = spdlog::level::warn;
break;
case DLogLevel::ERR:
level_ = spdlog::level::err;
break;
case DLogLevel::CRITICAL:
level_ = spdlog::level::critical;
break;
case DLogLevel::OFF:
level_ = spdlog::level::off;
break;
default:
level_ = spdlog::level::trace;
break;
}
}

81
dlog/dlog.hh Normal file
View File

@@ -0,0 +1,81 @@
//
// Created by Lenn on 2025/10/23.
//
#ifndef TOUCHSENSOR_DLOG_HH
#define TOUCHSENSOR_DLOG_HH
#include <vector>
#include <chrono>
#include <spdlog/spdlog.h>
#include <spdlog/sinks/daily_file_sink.h>
#include <spdlog/async.h>
#include <spdlog/sinks/stdout_color_sinks.h>
#ifndef SPDLOG_TRACE_ON
#define SPDLOG_TRACE_ON
#endif
#ifndef SPDLOG_DEBUG_ON
#define SPDLOG_DEBUG_ON
#endif
// #define SPDLOG_ACTIVE_LEVEL SPDLOG_LEVEL_TRACE
enum class DLogLevel {
TRACE,
DEBUG,
INFO,
WARN,
ERR,
CRITICAL,
OFF
};
class DLog{
public:
static DLog* get_instance() {
static DLog dlogger;
return &dlogger;
}
std::shared_ptr<spdlog::logger> get_logger() {
return log_;
}
static void set_level(DLogLevel level);
private:
DLog() {
std::vector<spdlog::sink_ptr> sinks;
auto consolesink = std::make_shared<spdlog::sinks::stdout_color_sink_mt>();
consolesink->set_level(level_);
consolesink->set_pattern("[%Y-%m-%d %H:%M:%S.%e][thread %t][%@,%!][%l] : %v");
sinks.push_back(consolesink);
auto dailysink = std::make_shared<spdlog::sinks::daily_file_format_sink_mt>("logs/daily.log", 23, 59);
dailysink->set_level(level_);
dailysink->set_pattern("[%Y-%m-%d %H:%M:%S.%e][thread %t][%@,%!][%l] : %v");
sinks.push_back(dailysink);
log_ = std::make_shared<spdlog::logger>("both", std::begin(sinks), std::end(sinks));
spdlog::register_logger(log_);
// spdlog::flush_every(std::chrono::seconds(1));
spdlog::flush_every(std::chrono::seconds(1));
}
~DLog() = default;
std::shared_ptr<spdlog::logger> log_;
static spdlog::level::level_enum level_;
};
#define LogTrace(...) SPDLOG_LOGGER_CALL(DLog::get_instance()->get_logger().get(), spdlog::level::trace, __VA_ARGS__);
#define LogDebug(...) SPDLOG_LOGGER_CALL(DLog::get_instance()->get_logger().get(), spdlog::level::debug, __VA_ARGS__);
#define LogInfo(...) SPDLOG_LOGGER_CALL(DLog::get_instance()->get_logger().get(), spdlog::level::info, __VA_ARGS__);
#define LogWarn(...) SPDLOG_LOGGER_CALL(DLog::get_instance()->get_logger().get(), spdlog::level::warn, __VA_ARGS__);
#define LogErr(...) SPDLOG_LOGGER_CALL(DLog::get_instance()->get_logger().get(), spdlog::level::err, __VA_ARGS__);
#define LogCritical(...) SPDLOG_LOGGER_CALL(DLog::get_instance()->get_logger().get(), spdlog::level::critical, __VA_ARGS__);
#define LogOff(...) SPDLOG_LOGGER_CALL(DLog::get_instance()->get_logger().get(), spdlog::level::off, __VA_ARGS__);
#endif //TOUCHSENSOR_DLOG_HH

120
examples/cpstream_demo.cc Normal file
View File

@@ -0,0 +1,120 @@
#include <algorithm>
#include <chrono>
#include <csignal>
#include <iostream>
#include <optional>
#include <string>
#include <thread>
#include <vector>
#include "components/ffmsep/cpstream_core.hh"
#include "components/ffmsep/tactile/tacdec.hh"
using namespace std::chrono_literals;
static volatile std::sig_atomic_t g_running = 1;
void handle_sigint(int) {
g_running = 0;
}
int main(int argc, char** argv) {
std::signal(SIGINT, handle_sigint);
// Register tactile codec so the stream can resolve it by ID or name.
ffmsep::tactile::register_tactile_codec();
const auto ports = ffmsep::CPStreamCore::list_available_ports();
const auto describe_ports = [&ports]() {
if (ports.empty()) {
std::cout << "No serial ports detected.\n";
return;
}
std::cout << "Available serial ports:\n";
for (const auto& p : ports) {
std::cout << " - " << p.port.c_str() << " (" << p.description.c_str() << ")\n";
}
};
std::string port;
if (argc >= 2) {
const std::string requested = argv[1];
if (ports.empty()) {
std::cout << "No serial ports detected, attempting requested '" << requested << "'.\n";
port = requested;
} else {
const auto it = std::find_if(ports.begin(), ports.end(),
[&](const auto& info) { return info.port == requested; });
if (it == ports.end()) {
std::cerr << "Requested port '" << requested << "' not found among detected ports.\n";
describe_ports();
return 1;
}
port = it->port;
}
} else {
describe_ports();
if (!ports.empty()) {
port = ports.front().port;
std::cout << "Auto-selecting: " << port << "\n";
} else {
std::cerr << "No serial ports found. Exiting.\n";
return 1;
}
}
ffmsep::CPStreamConfig cfg;
cfg.port = port;
cfg.baudrate = 115200;
cfg.codec_id = ffmsep::CPCodecID::Tactile; // resolve tactile decoder
cfg.read_chunk_size = 256;
cfg.packet_queue_capacity = 128;
cfg.frame_queue_capacity = 32;
ffmsep::CPStreamCore core(cfg);
if (!core.open()) {
std::cerr << "Open failed: " << core.last_error() << "\n";
return 2;
}
// Optional: receive frames via callback
core.set_frame_callback([](const ffmsep::DecodedFrame& df) {
const auto maybe = ffmsep::tactile::parse_frame(df.frame);
if (!maybe) {
return;
}
const auto& tf = *maybe;
const auto pv = ffmsep::tactile::parse_pressure_values(tf);
std::cout << "Frame pts=" << df.pts
<< " addr=" << int(tf.device_address)
<< " func=" << int(static_cast<std::uint8_t>(tf.function))
<< " len=" << int(tf.data_length)
<< " pressures=" << pv.size() << "\n";
});
if (!core.start()) {
std::cerr << "Start failed: " << core.last_error() << "\n";
return 3;
}
std::cout << "Streaming from " << port << ". Press Ctrl+C to stop...\n";
// Also demonstrate polling API (in case users don't want callbacks)
while (g_running) {
ffmsep::DecodedFrame df;
if (core.wait_for_frame(df, 200ms)) {
const auto maybe = ffmsep::tactile::parse_frame(df.frame);
if (maybe) {
const auto sz = ffmsep::tactile::parse_matrix_size_payload(*maybe);
if (sz) {
std::cout << " matrix=" << int(sz->long_edge) << "x" << int(sz->short_edge) << "\n";
}
}
}
}
core.stop();
core.close();
std::cout << "Stopped.\n";
return 0;
}

View File

@@ -16,7 +16,6 @@ struct PainterResource : public QPixmap {
: QPixmap {} {
const auto qurl = QUrl(QString::fromUtf8(url.data(), static_cast<int>(url.size())));
if (is_filesystem_url(url) || is_qt_resource_url(url)) {
qDebug() << "[PainterResource] is_filesystem_url" << url;
QPixmap::load(qurl.path());
} else if (is_network_url(url)) {
download_resource_from_network(qurl, [](auto&) { });

View File

@@ -1,51 +0,0 @@
project(serial)
if(APPLE)
find_library(IOKIT_LIBRARY IOKit)
find_library(FOUNDATION_LIBRARY Foundation)
endif()
if(UNIX AND NOT APPLE)
# If Linux, add rt and pthread
set(rt_LIBRARIES rt)
set(pthread_LIBRARIES pthread)
endif ()
## Sources
set(serial_SRCS
src/serial.cc
include/serial/serial.h
include/serial/v8stdint.h
)
if(APPLE)
# If OSX
list(APPEND serial_SRCS src/impl/unix.cc)
list(APPEND serial_SRCS src/impl/list_ports/list_ports_osx.cc)
elseif(UNIX)
# If unix
list(APPEND serial_SRCS src/impl/unix.cc)
list(APPEND serial_SRCS src/impl/list_ports/list_ports_linux.cc)
else()
# If windows
list(APPEND serial_SRCS src/impl/win.cc)
list(APPEND serial_SRCS src/impl/list_ports/list_ports_win.cc)
endif()
## Add serial library
add_library(${PROJECT_NAME} ${serial_SRCS})
if(APPLE)
target_link_libraries(${PROJECT_NAME} ${FOUNDATION_LIBRARY} ${IOKIT_LIBRARY})
elseif(UNIX)
target_link_libraries(${PROJECT_NAME} rt pthread)
else()
target_link_libraries(${PROJECT_NAME} setupapi)
endif()
set_target_properties(serial PROPERTIES
AUTOMOC OFF
AUTORCC OFF
AUTOUIC OFF
)
## Include headers
include_directories(include)

View File

@@ -1,182 +0,0 @@
/***
* This example expects the serial port has a loopback on it.
*
* Alternatively, you could use an Arduino:
*
* <pre>
* void setup() {
* Serial.begin(<insert your baudrate here>);
* }
*
* void loop() {
* if (Serial.available()) {
* Serial.write(Serial.read());
* }
* }
* </pre>
*/
#include <string>
#include <iostream>
#include <cstdio>
// OS Specific sleep
#ifdef _WIN32
#include <windows.h>
#else
#include <unistd.h>
#endif
#include "serial/serial.h"
using std::string;
using std::exception;
using std::cout;
using std::cerr;
using std::endl;
using std::vector;
void my_sleep(unsigned long milliseconds) {
#ifdef _WIN32
Sleep(milliseconds); // 100 ms
#else
usleep(milliseconds*1000); // 100 ms
#endif
}
void enumerate_ports()
{
vector<serial::PortInfo> devices_found = serial::list_ports();
vector<serial::PortInfo>::iterator iter = devices_found.begin();
while( iter != devices_found.end() )
{
serial::PortInfo device = *iter++;
printf( "(%s, %s, %s)\n", device.port.c_str(), device.description.c_str(),
device.hardware_id.c_str() );
}
}
void print_usage()
{
cerr << "Usage: test_serial {-e|<serial port address>} ";
cerr << "<baudrate> [test string]" << endl;
}
int run(int argc, char **argv)
{
if(argc < 2) {
print_usage();
return 0;
}
// Argument 1 is the serial port or enumerate flag
string port(argv[1]);
if( port == "-e" ) {
enumerate_ports();
return 0;
}
else if( argc < 3 ) {
print_usage();
return 1;
}
// Argument 2 is the baudrate
unsigned long baud = 0;
#if defined(WIN32) && !defined(__MINGW32__)
sscanf_s(argv[2], "%lu", &baud);
#else
sscanf(argv[2], "%lu", &baud);
#endif
// port, baudrate, timeout in milliseconds
serial::Serial my_serial(port, baud, serial::Timeout::simpleTimeout(1000));
cout << "Is the serial port open?";
if(my_serial.isOpen())
cout << " Yes." << endl;
else
cout << " No." << endl;
// Get the Test string
int count = 0;
string test_string;
if (argc == 4) {
test_string = argv[3];
} else {
test_string = "Testing.";
}
// Test the timeout, there should be 1 second between prints
cout << "Timeout == 1000ms, asking for 1 more byte than written." << endl;
while (count < 10) {
size_t bytes_wrote = my_serial.write(test_string);
string result = my_serial.read(test_string.length()+1);
cout << "Iteration: " << count << ", Bytes written: ";
cout << bytes_wrote << ", Bytes read: ";
cout << result.length() << ", String read: " << result << endl;
count += 1;
}
// Test the timeout at 250ms
my_serial.setTimeout(serial::Timeout::max(), 250, 0, 250, 0);
count = 0;
cout << "Timeout == 250ms, asking for 1 more byte than written." << endl;
while (count < 10) {
size_t bytes_wrote = my_serial.write(test_string);
string result = my_serial.read(test_string.length()+1);
cout << "Iteration: " << count << ", Bytes written: ";
cout << bytes_wrote << ", Bytes read: ";
cout << result.length() << ", String read: " << result << endl;
count += 1;
}
// Test the timeout at 250ms, but asking exactly for what was written
count = 0;
cout << "Timeout == 250ms, asking for exactly what was written." << endl;
while (count < 10) {
size_t bytes_wrote = my_serial.write(test_string);
string result = my_serial.read(test_string.length());
cout << "Iteration: " << count << ", Bytes written: ";
cout << bytes_wrote << ", Bytes read: ";
cout << result.length() << ", String read: " << result << endl;
count += 1;
}
// Test the timeout at 250ms, but asking for 1 less than what was written
count = 0;
cout << "Timeout == 250ms, asking for 1 less than was written." << endl;
while (count < 10) {
size_t bytes_wrote = my_serial.write(test_string);
string result = my_serial.read(test_string.length()-1);
cout << "Iteration: " << count << ", Bytes written: ";
cout << bytes_wrote << ", Bytes read: ";
cout << result.length() << ", String read: " << result << endl;
count += 1;
}
return 0;
}
int main(int argc, char **argv) {
try {
return run(argc, argv);
} catch (exception &e) {
cerr << "Unhandled Exception: " << e.what() << endl;
}
}

View File

@@ -1,221 +0,0 @@
/*!
* \file serial/impl/unix.h
* \author William Woodall <wjwwood@gmail.com>
* \author John Harrison <ash@greaterthaninfinity.com>
* \version 0.1
*
* \section LICENSE
*
* The MIT License
*
* Copyright (c) 2012 William Woodall, John Harrison
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* \section DESCRIPTION
*
* This provides a unix based pimpl for the Serial class. This implementation is
* based off termios.h and uses select for multiplexing the IO ports.
*
*/
#if !defined(_WIN32)
#ifndef SERIAL_IMPL_UNIX_H
#define SERIAL_IMPL_UNIX_H
#include "serial/serial.h"
#include <pthread.h>
namespace serial {
using std::size_t;
using std::string;
using std::invalid_argument;
using serial::SerialException;
using serial::IOException;
class MillisecondTimer {
public:
MillisecondTimer(const uint32_t millis);
int64_t remaining();
private:
static timespec timespec_now();
timespec expiry;
};
class serial::Serial::SerialImpl {
public:
SerialImpl (const string &port,
unsigned long baudrate,
bytesize_t bytesize,
parity_t parity,
stopbits_t stopbits,
flowcontrol_t flowcontrol);
virtual ~SerialImpl ();
void
open ();
void
close ();
bool
isOpen () const;
size_t
available ();
bool
waitReadable (uint32_t timeout);
void
waitByteTimes (size_t count);
size_t
read (uint8_t *buf, size_t size = 1);
size_t
write (const uint8_t *data, size_t length);
void
flush ();
void
flushInput ();
void
flushOutput ();
void
sendBreak (int duration);
void
setBreak (bool level);
void
setRTS (bool level);
void
setDTR (bool level);
bool
waitForChange ();
bool
getCTS ();
bool
getDSR ();
bool
getRI ();
bool
getCD ();
void
setPort (const string &port);
string
getPort () const;
void
setTimeout (Timeout &timeout);
Timeout
getTimeout () const;
void
setBaudrate (unsigned long baudrate);
unsigned long
getBaudrate () const;
void
setBytesize (bytesize_t bytesize);
bytesize_t
getBytesize () const;
void
setParity (parity_t parity);
parity_t
getParity () const;
void
setStopbits (stopbits_t stopbits);
stopbits_t
getStopbits () const;
void
setFlowcontrol (flowcontrol_t flowcontrol);
flowcontrol_t
getFlowcontrol () const;
void
readLock ();
void
readUnlock ();
void
writeLock ();
void
writeUnlock ();
protected:
void reconfigurePort ();
private:
string port_; // Path to the file descriptor
int fd_; // The current file descriptor
bool is_open_;
bool xonxoff_;
bool rtscts_;
Timeout timeout_; // Timeout for read operations
unsigned long baudrate_; // Baudrate
uint32_t byte_time_ns_; // Nanoseconds to transmit/receive a single byte
parity_t parity_; // Parity
bytesize_t bytesize_; // Size of the bytes
stopbits_t stopbits_; // Stop Bits
flowcontrol_t flowcontrol_; // Flow Control
// Mutex used to lock the read functions
pthread_mutex_t read_mutex;
// Mutex used to lock the write functions
pthread_mutex_t write_mutex;
};
}
#endif // SERIAL_IMPL_UNIX_H
#endif // !defined(_WIN32)

View File

@@ -1,207 +0,0 @@
/*!
* \file serial/impl/windows.h
* \author William Woodall <wjwwood@gmail.com>
* \author John Harrison <ash@greaterthaninfinity.com>
* \version 0.1
*
* \section LICENSE
*
* The MIT License
*
* Copyright (c) 2012 William Woodall, John Harrison
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* \section DESCRIPTION
*
* This provides a windows implementation of the Serial class interface.
*
*/
#if defined(_WIN32)
#ifndef SERIAL_IMPL_WINDOWS_H
#define SERIAL_IMPL_WINDOWS_H
#include "serial/serial.h"
#include "windows.h"
namespace serial {
using std::string;
using std::wstring;
using std::invalid_argument;
using serial::SerialException;
using serial::IOException;
class serial::Serial::SerialImpl {
public:
SerialImpl (const string &port,
unsigned long baudrate,
bytesize_t bytesize,
parity_t parity,
stopbits_t stopbits,
flowcontrol_t flowcontrol);
virtual ~SerialImpl ();
void
open ();
void
close ();
bool
isOpen () const;
size_t
available ();
bool
waitReadable (uint32_t timeout);
void
waitByteTimes (size_t count);
size_t
read (uint8_t *buf, size_t size = 1);
size_t
write (const uint8_t *data, size_t length);
void
flush ();
void
flushInput ();
void
flushOutput ();
void
sendBreak (int duration);
void
setBreak (bool level);
void
setRTS (bool level);
void
setDTR (bool level);
bool
waitForChange ();
bool
getCTS ();
bool
getDSR ();
bool
getRI ();
bool
getCD ();
void
setPort (const string &port);
string
getPort () const;
void
setTimeout (Timeout &timeout);
Timeout
getTimeout () const;
void
setBaudrate (unsigned long baudrate);
unsigned long
getBaudrate () const;
void
setBytesize (bytesize_t bytesize);
bytesize_t
getBytesize () const;
void
setParity (parity_t parity);
parity_t
getParity () const;
void
setStopbits (stopbits_t stopbits);
stopbits_t
getStopbits () const;
void
setFlowcontrol (flowcontrol_t flowcontrol);
flowcontrol_t
getFlowcontrol () const;
void
readLock ();
void
readUnlock ();
void
writeLock ();
void
writeUnlock ();
protected:
void reconfigurePort ();
private:
wstring port_; // Path to the file descriptor
HANDLE fd_;
bool is_open_;
Timeout timeout_; // Timeout for read operations
unsigned long baudrate_; // Baudrate
parity_t parity_; // Parity
bytesize_t bytesize_; // Size of the bytes
stopbits_t stopbits_; // Stop Bits
flowcontrol_t flowcontrol_; // Flow Control
// Mutex used to lock the read functions
HANDLE read_mutex;
// Mutex used to lock the write functions
HANDLE write_mutex;
};
}
#endif // SERIAL_IMPL_WINDOWS_H
#endif // if defined(_WIN32)

View File

@@ -1,775 +0,0 @@
/*!
* \file serial/serial.h
* \author William Woodall <wjwwood@gmail.com>
* \author John Harrison <ash.gti@gmail.com>
* \version 0.1
*
* \section LICENSE
*
* The MIT License
*
* Copyright (c) 2012 William Woodall
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* \section DESCRIPTION
*
* This provides a cross platform interface for interacting with Serial Ports.
*/
#ifndef SERIAL_H
#define SERIAL_H
#include <limits>
#include <vector>
#include <string>
#include <cstring>
#include <sstream>
#include <exception>
#include <stdexcept>
#include <serial/v8stdint.h>
#define THROW(exceptionClass, message) throw exceptionClass(__FILE__, \
__LINE__, (message) )
namespace serial {
/*!
* Enumeration defines the possible bytesizes for the serial port.
*/
typedef enum {
fivebits = 5,
sixbits = 6,
sevenbits = 7,
eightbits = 8
} bytesize_t;
/*!
* Enumeration defines the possible parity types for the serial port.
*/
typedef enum {
parity_none = 0,
parity_odd = 1,
parity_even = 2,
parity_mark = 3,
parity_space = 4
} parity_t;
/*!
* Enumeration defines the possible stopbit types for the serial port.
*/
typedef enum {
stopbits_one = 1,
stopbits_two = 2,
stopbits_one_point_five
} stopbits_t;
/*!
* Enumeration defines the possible flowcontrol types for the serial port.
*/
typedef enum {
flowcontrol_none = 0,
flowcontrol_software,
flowcontrol_hardware
} flowcontrol_t;
/*!
* Structure for setting the timeout of the serial port, times are
* in milliseconds.
*
* In order to disable the interbyte timeout, set it to Timeout::max().
*/
struct Timeout {
#ifdef max
# undef max
#endif
static uint32_t max() {return std::numeric_limits<uint32_t>::max();}
/*!
* Convenience function to generate Timeout structs using a
* single absolute timeout.
*
* \param timeout A long that defines the time in milliseconds until a
* timeout occurs after a call to read or write is made.
*
* \return Timeout struct that represents this simple timeout provided.
*/
static Timeout simpleTimeout(uint32_t timeout) {
return Timeout(max(), timeout, 0, timeout, 0);
}
/*! Number of milliseconds between bytes received to timeout on. */
uint32_t inter_byte_timeout;
/*! A constant number of milliseconds to wait after calling read. */
uint32_t read_timeout_constant;
/*! A multiplier against the number of requested bytes to wait after
* calling read.
*/
uint32_t read_timeout_multiplier;
/*! A constant number of milliseconds to wait after calling write. */
uint32_t write_timeout_constant;
/*! A multiplier against the number of requested bytes to wait after
* calling write.
*/
uint32_t write_timeout_multiplier;
explicit Timeout (uint32_t inter_byte_timeout_=0,
uint32_t read_timeout_constant_=0,
uint32_t read_timeout_multiplier_=0,
uint32_t write_timeout_constant_=0,
uint32_t write_timeout_multiplier_=0)
: inter_byte_timeout(inter_byte_timeout_),
read_timeout_constant(read_timeout_constant_),
read_timeout_multiplier(read_timeout_multiplier_),
write_timeout_constant(write_timeout_constant_),
write_timeout_multiplier(write_timeout_multiplier_)
{}
};
/*!
* Class that provides a portable serial port interface.
*/
class Serial {
public:
/*!
* Creates a Serial object and opens the port if a port is specified,
* otherwise it remains closed until serial::Serial::open is called.
*
* \param port A std::string containing the address of the serial port,
* which would be something like 'COM1' on Windows and '/dev/ttyS0'
* on Linux.
*
* \param baudrate An unsigned 32-bit integer that represents the baudrate
*
* \param timeout A serial::Timeout struct that defines the timeout
* conditions for the serial port. \see serial::Timeout
*
* \param bytesize Size of each byte in the serial transmission of data,
* default is eightbits, possible values are: fivebits, sixbits, sevenbits,
* eightbits
*
* \param parity Method of parity, default is parity_none, possible values
* are: parity_none, parity_odd, parity_even
*
* \param stopbits Number of stop bits used, default is stopbits_one,
* possible values are: stopbits_one, stopbits_one_point_five, stopbits_two
*
* \param flowcontrol Type of flowcontrol used, default is
* flowcontrol_none, possible values are: flowcontrol_none,
* flowcontrol_software, flowcontrol_hardware
*
* \throw serial::PortNotOpenedException
* \throw serial::IOException
* \throw std::invalid_argument
*/
Serial (const std::string &port = "",
uint32_t baudrate = 9600,
Timeout timeout = Timeout(),
bytesize_t bytesize = eightbits,
parity_t parity = parity_none,
stopbits_t stopbits = stopbits_one,
flowcontrol_t flowcontrol = flowcontrol_none);
/*! Destructor */
virtual ~Serial ();
/*!
* Opens the serial port as long as the port is set and the port isn't
* already open.
*
* If the port is provided to the constructor then an explicit call to open
* is not needed.
*
* \see Serial::Serial
*
* \throw std::invalid_argument
* \throw serial::SerialException
* \throw serial::IOException
*/
void
open ();
/*! Gets the open status of the serial port.
*
* \return Returns true if the port is open, false otherwise.
*/
bool
isOpen () const;
/*! Closes the serial port. */
void
close ();
/*! Return the number of characters in the buffer. */
size_t
available ();
/*! Block until there is serial data to read or read_timeout_constant
* number of milliseconds have elapsed. The return value is true when
* the function exits with the port in a readable state, false otherwise
* (due to timeout or select interruption). */
bool
waitReadable ();
/*! Block for a period of time corresponding to the transmission time of
* count characters at present serial settings. This may be used in con-
* junction with waitReadable to read larger blocks of data from the
* port. */
void
waitByteTimes (size_t count);
/*! Read a given amount of bytes from the serial port into a given buffer.
*
* The read function will return in one of three cases:
* * The number of requested bytes was read.
* * In this case the number of bytes requested will match the size_t
* returned by read.
* * A timeout occurred, in this case the number of bytes read will not
* match the amount requested, but no exception will be thrown. One of
* two possible timeouts occurred:
* * The inter byte timeout expired, this means that number of
* milliseconds elapsed between receiving bytes from the serial port
* exceeded the inter byte timeout.
* * The total timeout expired, which is calculated by multiplying the
* read timeout multiplier by the number of requested bytes and then
* added to the read timeout constant. If that total number of
* milliseconds elapses after the initial call to read a timeout will
* occur.
* * An exception occurred, in this case an actual exception will be thrown.
*
* \param buffer An uint8_t array of at least the requested size.
* \param size A size_t defining how many bytes to be read.
*
* \return A size_t representing the number of bytes read as a result of the
* call to read.
*
* \throw serial::PortNotOpenedException
* \throw serial::SerialException
*/
size_t
read (uint8_t *buffer, size_t size);
/*! Read a given amount of bytes from the serial port into a give buffer.
*
* \param buffer A reference to a std::vector of uint8_t.
* \param size A size_t defining how many bytes to be read.
*
* \return A size_t representing the number of bytes read as a result of the
* call to read.
*
* \throw serial::PortNotOpenedException
* \throw serial::SerialException
*/
size_t
read (std::vector<uint8_t> &buffer, size_t size = 1);
/*! Read a given amount of bytes from the serial port into a give buffer.
*
* \param buffer A reference to a std::string.
* \param size A size_t defining how many bytes to be read.
*
* \return A size_t representing the number of bytes read as a result of the
* call to read.
*
* \throw serial::PortNotOpenedException
* \throw serial::SerialException
*/
size_t
read (std::string &buffer, size_t size = 1);
/*! Read a given amount of bytes from the serial port and return a string
* containing the data.
*
* \param size A size_t defining how many bytes to be read.
*
* \return A std::string containing the data read from the port.
*
* \throw serial::PortNotOpenedException
* \throw serial::SerialException
*/
std::string
read (size_t size = 1);
/*! Reads in a line or until a given delimiter has been processed.
*
* Reads from the serial port until a single line has been read.
*
* \param buffer A std::string reference used to store the data.
* \param size A maximum length of a line, defaults to 65536 (2^16)
* \param eol A string to match against for the EOL.
*
* \return A size_t representing the number of bytes read.
*
* \throw serial::PortNotOpenedException
* \throw serial::SerialException
*/
size_t
readline (std::string &buffer, size_t size = 65536, std::string eol = "\n");
/*! Reads in a line or until a given delimiter has been processed.
*
* Reads from the serial port until a single line has been read.
*
* \param size A maximum length of a line, defaults to 65536 (2^16)
* \param eol A string to match against for the EOL.
*
* \return A std::string containing the line.
*
* \throw serial::PortNotOpenedException
* \throw serial::SerialException
*/
std::string
readline (size_t size = 65536, std::string eol = "\n");
/*! Reads in multiple lines until the serial port times out.
*
* This requires a timeout > 0 before it can be run. It will read until a
* timeout occurs and return a list of strings.
*
* \param size A maximum length of combined lines, defaults to 65536 (2^16)
*
* \param eol A string to match against for the EOL.
*
* \return A vector<string> containing the lines.
*
* \throw serial::PortNotOpenedException
* \throw serial::SerialException
*/
std::vector<std::string>
readlines (size_t size = 65536, std::string eol = "\n");
/*! Write a string to the serial port.
*
* \param data A const reference containing the data to be written
* to the serial port.
*
* \param size A size_t that indicates how many bytes should be written from
* the given data buffer.
*
* \return A size_t representing the number of bytes actually written to
* the serial port.
*
* \throw serial::PortNotOpenedException
* \throw serial::SerialException
* \throw serial::IOException
*/
size_t
write (const uint8_t *data, size_t size);
/*! Write a string to the serial port.
*
* \param data A const reference containing the data to be written
* to the serial port.
*
* \return A size_t representing the number of bytes actually written to
* the serial port.
*
* \throw serial::PortNotOpenedException
* \throw serial::SerialException
* \throw serial::IOException
*/
size_t
write (const std::vector<uint8_t> &data);
/*! Write a string to the serial port.
*
* \param data A const reference containing the data to be written
* to the serial port.
*
* \return A size_t representing the number of bytes actually written to
* the serial port.
*
* \throw serial::PortNotOpenedException
* \throw serial::SerialException
* \throw serial::IOException
*/
size_t
write (const std::string &data);
/*! Sets the serial port identifier.
*
* \param port A const std::string reference containing the address of the
* serial port, which would be something like 'COM1' on Windows and
* '/dev/ttyS0' on Linux.
*
* \throw std::invalid_argument
*/
void
setPort (const std::string &port);
/*! Gets the serial port identifier.
*
* \see Serial::setPort
*
* \throw std::invalid_argument
*/
std::string
getPort () const;
/*! Sets the timeout for reads and writes using the Timeout struct.
*
* There are two timeout conditions described here:
* * The inter byte timeout:
* * The inter_byte_timeout component of serial::Timeout defines the
* maximum amount of time, in milliseconds, between receiving bytes on
* the serial port that can pass before a timeout occurs. Setting this
* to zero will prevent inter byte timeouts from occurring.
* * Total time timeout:
* * The constant and multiplier component of this timeout condition,
* for both read and write, are defined in serial::Timeout. This
* timeout occurs if the total time since the read or write call was
* made exceeds the specified time in milliseconds.
* * The limit is defined by multiplying the multiplier component by the
* number of requested bytes and adding that product to the constant
* component. In this way if you want a read call, for example, to
* timeout after exactly one second regardless of the number of bytes
* you asked for then set the read_timeout_constant component of
* serial::Timeout to 1000 and the read_timeout_multiplier to zero.
* This timeout condition can be used in conjunction with the inter
* byte timeout condition with out any problems, timeout will simply
* occur when one of the two timeout conditions is met. This allows
* users to have maximum control over the trade-off between
* responsiveness and efficiency.
*
* Read and write functions will return in one of three cases. When the
* reading or writing is complete, when a timeout occurs, or when an
* exception occurs.
*
* A timeout of 0 enables non-blocking mode.
*
* \param timeout A serial::Timeout struct containing the inter byte
* timeout, and the read and write timeout constants and multipliers.
*
* \see serial::Timeout
*/
void
setTimeout (Timeout &timeout);
/*! Sets the timeout for reads and writes. */
void
setTimeout (uint32_t inter_byte_timeout, uint32_t read_timeout_constant,
uint32_t read_timeout_multiplier, uint32_t write_timeout_constant,
uint32_t write_timeout_multiplier)
{
Timeout timeout(inter_byte_timeout, read_timeout_constant,
read_timeout_multiplier, write_timeout_constant,
write_timeout_multiplier);
return setTimeout(timeout);
}
/*! Gets the timeout for reads in seconds.
*
* \return A Timeout struct containing the inter_byte_timeout, and read
* and write timeout constants and multipliers.
*
* \see Serial::setTimeout
*/
Timeout
getTimeout () const;
/*! Sets the baudrate for the serial port.
*
* Possible baudrates depends on the system but some safe baudrates include:
* 110, 300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 56000,
* 57600, 115200
* Some other baudrates that are supported by some comports:
* 128000, 153600, 230400, 256000, 460800, 500000, 921600
*
* \param baudrate An integer that sets the baud rate for the serial port.
*
* \throw std::invalid_argument
*/
void
setBaudrate (uint32_t baudrate);
/*! Gets the baudrate for the serial port.
*
* \return An integer that sets the baud rate for the serial port.
*
* \see Serial::setBaudrate
*
* \throw std::invalid_argument
*/
uint32_t
getBaudrate () const;
/*! Sets the bytesize for the serial port.
*
* \param bytesize Size of each byte in the serial transmission of data,
* default is eightbits, possible values are: fivebits, sixbits, sevenbits,
* eightbits
*
* \throw std::invalid_argument
*/
void
setBytesize (bytesize_t bytesize);
/*! Gets the bytesize for the serial port.
*
* \see Serial::setBytesize
*
* \throw std::invalid_argument
*/
bytesize_t
getBytesize () const;
/*! Sets the parity for the serial port.
*
* \param parity Method of parity, default is parity_none, possible values
* are: parity_none, parity_odd, parity_even
*
* \throw std::invalid_argument
*/
void
setParity (parity_t parity);
/*! Gets the parity for the serial port.
*
* \see Serial::setParity
*
* \throw std::invalid_argument
*/
parity_t
getParity () const;
/*! Sets the stopbits for the serial port.
*
* \param stopbits Number of stop bits used, default is stopbits_one,
* possible values are: stopbits_one, stopbits_one_point_five, stopbits_two
*
* \throw std::invalid_argument
*/
void
setStopbits (stopbits_t stopbits);
/*! Gets the stopbits for the serial port.
*
* \see Serial::setStopbits
*
* \throw std::invalid_argument
*/
stopbits_t
getStopbits () const;
/*! Sets the flow control for the serial port.
*
* \param flowcontrol Type of flowcontrol used, default is flowcontrol_none,
* possible values are: flowcontrol_none, flowcontrol_software,
* flowcontrol_hardware
*
* \throw std::invalid_argument
*/
void
setFlowcontrol (flowcontrol_t flowcontrol);
/*! Gets the flow control for the serial port.
*
* \see Serial::setFlowcontrol
*
* \throw std::invalid_argument
*/
flowcontrol_t
getFlowcontrol () const;
/*! Flush the input and output buffers */
void
flush ();
/*! Flush only the input buffer */
void
flushInput ();
/*! Flush only the output buffer */
void
flushOutput ();
/*! Sends the RS-232 break signal. See tcsendbreak(3). */
void
sendBreak (int duration);
/*! Set the break condition to a given level. Defaults to true. */
void
setBreak (bool level = true);
/*! Set the RTS handshaking line to the given level. Defaults to true. */
void
setRTS (bool level = true);
/*! Set the DTR handshaking line to the given level. Defaults to true. */
void
setDTR (bool level = true);
/*!
* Blocks until CTS, DSR, RI, CD changes or something interrupts it.
*
* Can throw an exception if an error occurs while waiting.
* You can check the status of CTS, DSR, RI, and CD once this returns.
* Uses TIOCMIWAIT via ioctl if available (mostly only on Linux) with a
* resolution of less than +-1ms and as good as +-0.2ms. Otherwise a
* polling method is used which can give +-2ms.
*
* \return Returns true if one of the lines changed, false if something else
* occurred.
*
* \throw SerialException
*/
bool
waitForChange ();
/*! Returns the current status of the CTS line. */
bool
getCTS ();
/*! Returns the current status of the DSR line. */
bool
getDSR ();
/*! Returns the current status of the RI line. */
bool
getRI ();
/*! Returns the current status of the CD line. */
bool
getCD ();
private:
// Disable copy constructors
Serial(const Serial&);
Serial& operator=(const Serial&);
// Pimpl idiom, d_pointer
class SerialImpl;
SerialImpl *pimpl_;
// Scoped Lock Classes
class ScopedReadLock;
class ScopedWriteLock;
// Read common function
size_t
read_ (uint8_t *buffer, size_t size);
// Write common function
size_t
write_ (const uint8_t *data, size_t length);
};
class SerialException : public std::exception
{
// Disable copy constructors
SerialException& operator=(const SerialException&);
std::string e_what_;
public:
SerialException (const char *description) {
std::stringstream ss;
ss << "SerialException " << description << " failed.";
e_what_ = ss.str();
}
SerialException (const SerialException& other) : e_what_(other.e_what_) {}
virtual ~SerialException() throw() {}
virtual const char* what () const throw () {
return e_what_.c_str();
}
};
class IOException : public std::exception
{
// Disable copy constructors
IOException& operator=(const IOException&);
std::string file_;
int line_;
std::string e_what_;
int errno_;
public:
explicit IOException (std::string file, int line, int errnum)
: file_(file), line_(line), errno_(errnum) {
std::stringstream ss;
#if defined(_WIN32) && !defined(__MINGW32__)
char error_str [1024];
strerror_s(error_str, 1024, errnum);
#else
char * error_str = strerror(errnum);
#endif
ss << "IO Exception (" << errno_ << "): " << error_str;
ss << ", file " << file_ << ", line " << line_ << ".";
e_what_ = ss.str();
}
explicit IOException (std::string file, int line, const char * description)
: file_(file), line_(line), errno_(0) {
std::stringstream ss;
ss << "IO Exception: " << description;
ss << ", file " << file_ << ", line " << line_ << ".";
e_what_ = ss.str();
}
virtual ~IOException() throw() {}
IOException (const IOException& other) : line_(other.line_), e_what_(other.e_what_), errno_(other.errno_) {}
int getErrorNumber () const { return errno_; }
virtual const char* what () const throw () {
return e_what_.c_str();
}
};
class PortNotOpenedException : public std::exception
{
// Disable copy constructors
const PortNotOpenedException& operator=(PortNotOpenedException);
std::string e_what_;
public:
PortNotOpenedException (const char * description) {
std::stringstream ss;
ss << "PortNotOpenedException " << description << " failed.";
e_what_ = ss.str();
}
PortNotOpenedException (const PortNotOpenedException& other) : e_what_(other.e_what_) {}
virtual ~PortNotOpenedException() throw() {}
virtual const char* what () const throw () {
return e_what_.c_str();
}
};
/*!
* Structure that describes a serial device.
*/
struct PortInfo {
/*! Address of the serial port (this can be passed to the constructor of Serial). */
std::string port;
/*! Human readable description of serial device if available. */
std::string description;
/*! Hardware ID (e.g. VID:PID of USB serial devices) or "n/a" if not available. */
std::string hardware_id;
};
/* Lists the serial ports available on the system
*
* Returns a vector of available serial ports, each represented
* by a serial::PortInfo data structure:
*
* \return vector of serial::PortInfo.
*/
std::vector<PortInfo>
list_ports();
} // namespace serial
#endif

View File

@@ -1,57 +0,0 @@
// This header is from the v8 google project:
// http://code.google.com/p/v8/source/browse/trunk/include/v8stdint.h
// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Load definitions of standard types.
#ifndef V8STDINT_H_
#define V8STDINT_H_
#include <stddef.h>
#include <stdio.h>
#if defined(_WIN32) && !defined(__MINGW32__)
typedef signed char int8_t;
typedef unsigned char uint8_t;
typedef short int16_t; // NOLINT
typedef unsigned short uint16_t; // NOLINT
typedef int int32_t;
typedef unsigned int uint32_t;
typedef __int64 int64_t;
typedef unsigned __int64 uint64_t;
// intptr_t and friends are defined in crtdefs.h through stdio.h.
#else
#include <stdint.h>
#endif
#endif // V8STDINT_H_

View File

@@ -1,336 +0,0 @@
#if defined(__linux__)
/*
* Copyright (c) 2014 Craig Lilley <cralilley@gmail.com>
* This software is made available under the terms of the MIT licence.
* A copy of the licence can be obtained from:
* http://opensource.org/licenses/MIT
*/
#include <vector>
#include <string>
#include <sstream>
#include <stdexcept>
#include <iostream>
#include <fstream>
#include <cstdio>
#include <cstdarg>
#include <cstdlib>
#include <glob.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include "serial/serial.h"
using serial::PortInfo;
using std::istringstream;
using std::ifstream;
using std::getline;
using std::vector;
using std::string;
using std::cout;
using std::endl;
static vector<string> glob(const vector<string>& patterns);
static string basename(const string& path);
static string dirname(const string& path);
static bool path_exists(const string& path);
static string realpath(const string& path);
static string usb_sysfs_friendly_name(const string& sys_usb_path);
static vector<string> get_sysfs_info(const string& device_path);
static string read_line(const string& file);
static string usb_sysfs_hw_string(const string& sysfs_path);
static string format(const char* format, ...);
vector<string>
glob(const vector<string>& patterns)
{
vector<string> paths_found;
if(patterns.size() == 0)
return paths_found;
glob_t glob_results;
int glob_retval = glob(patterns[0].c_str(), 0, NULL, &glob_results);
vector<string>::const_iterator iter = patterns.begin();
while(++iter != patterns.end())
{
glob_retval = glob(iter->c_str(), GLOB_APPEND, NULL, &glob_results);
}
for(int path_index = 0; path_index < glob_results.gl_pathc; path_index++)
{
paths_found.push_back(glob_results.gl_pathv[path_index]);
}
globfree(&glob_results);
return paths_found;
}
string
basename(const string& path)
{
size_t pos = path.rfind("/");
if(pos == std::string::npos)
return path;
return string(path, pos+1, string::npos);
}
string
dirname(const string& path)
{
size_t pos = path.rfind("/");
if(pos == std::string::npos)
return path;
else if(pos == 0)
return "/";
return string(path, 0, pos);
}
bool
path_exists(const string& path)
{
struct stat sb;
if( stat(path.c_str(), &sb ) == 0 )
return true;
return false;
}
string
realpath(const string& path)
{
char* real_path = realpath(path.c_str(), NULL);
string result;
if(real_path != NULL)
{
result = real_path;
free(real_path);
}
return result;
}
string
usb_sysfs_friendly_name(const string& sys_usb_path)
{
unsigned int device_number = 0;
istringstream( read_line(sys_usb_path + "/devnum") ) >> device_number;
string manufacturer = read_line( sys_usb_path + "/manufacturer" );
string product = read_line( sys_usb_path + "/product" );
string serial = read_line( sys_usb_path + "/serial" );
if( manufacturer.empty() && product.empty() && serial.empty() )
return "";
return format("%s %s %s", manufacturer.c_str(), product.c_str(), serial.c_str() );
}
vector<string>
get_sysfs_info(const string& device_path)
{
string device_name = basename( device_path );
string friendly_name;
string hardware_id;
string sys_device_path = format( "/sys/class/tty/%s/device", device_name.c_str() );
if( device_name.compare(0,6,"ttyUSB") == 0 )
{
sys_device_path = dirname( dirname( realpath( sys_device_path ) ) );
if( path_exists( sys_device_path ) )
{
friendly_name = usb_sysfs_friendly_name( sys_device_path );
hardware_id = usb_sysfs_hw_string( sys_device_path );
}
}
else if( device_name.compare(0,6,"ttyACM") == 0 )
{
sys_device_path = dirname( realpath( sys_device_path ) );
if( path_exists( sys_device_path ) )
{
friendly_name = usb_sysfs_friendly_name( sys_device_path );
hardware_id = usb_sysfs_hw_string( sys_device_path );
}
}
else
{
// Try to read ID string of PCI device
string sys_id_path = sys_device_path + "/id";
if( path_exists( sys_id_path ) )
hardware_id = read_line( sys_id_path );
}
if( friendly_name.empty() )
friendly_name = device_name;
if( hardware_id.empty() )
hardware_id = "n/a";
vector<string> result;
result.push_back(friendly_name);
result.push_back(hardware_id);
return result;
}
string
read_line(const string& file)
{
ifstream ifs(file.c_str(), ifstream::in);
string line;
if(ifs)
{
getline(ifs, line);
}
return line;
}
string
format(const char* format, ...)
{
va_list ap;
size_t buffer_size_bytes = 256;
string result;
char* buffer = (char*)malloc(buffer_size_bytes);
if( buffer == NULL )
return result;
bool done = false;
unsigned int loop_count = 0;
while(!done)
{
va_start(ap, format);
int return_value = vsnprintf(buffer, buffer_size_bytes, format, ap);
if( return_value < 0 )
{
done = true;
}
else if( return_value >= buffer_size_bytes )
{
// Realloc and try again.
buffer_size_bytes = return_value + 1;
char* new_buffer_ptr = (char*)realloc(buffer, buffer_size_bytes);
if( new_buffer_ptr == NULL )
{
done = true;
}
else
{
buffer = new_buffer_ptr;
}
}
else
{
result = buffer;
done = true;
}
va_end(ap);
if( ++loop_count > 5 )
done = true;
}
free(buffer);
return result;
}
string
usb_sysfs_hw_string(const string& sysfs_path)
{
string serial_number = read_line( sysfs_path + "/serial" );
if( serial_number.length() > 0 )
{
serial_number = format( "SNR=%s", serial_number.c_str() );
}
string vid = read_line( sysfs_path + "/idVendor" );
string pid = read_line( sysfs_path + "/idProduct" );
return format("USB VID:PID=%s:%s %s", vid.c_str(), pid.c_str(), serial_number.c_str() );
}
vector<PortInfo>
serial::list_ports()
{
vector<PortInfo> results;
vector<string> search_globs;
search_globs.push_back("/dev/ttyACM*");
search_globs.push_back("/dev/ttyS*");
search_globs.push_back("/dev/ttyUSB*");
search_globs.push_back("/dev/tty.*");
search_globs.push_back("/dev/cu.*");
search_globs.push_back("/dev/rfcomm*");
vector<string> devices_found = glob( search_globs );
vector<string>::iterator iter = devices_found.begin();
while( iter != devices_found.end() )
{
string device = *iter++;
vector<string> sysfs_info = get_sysfs_info( device );
string friendly_name = sysfs_info[0];
string hardware_id = sysfs_info[1];
PortInfo device_entry;
device_entry.port = device;
device_entry.description = friendly_name;
device_entry.hardware_id = hardware_id;
results.push_back( device_entry );
}
return results;
}
#endif // defined(__linux__)

View File

@@ -1,286 +0,0 @@
#if defined(__APPLE__)
#include <sys/param.h>
#include <stdint.h>
#include <CoreFoundation/CoreFoundation.h>
#include <IOKit/IOKitLib.h>
#include <IOKit/serial/IOSerialKeys.h>
#include <IOKit/IOBSD.h>
#include <iostream>
#include <string>
#include <vector>
#include "serial/serial.h"
using serial::PortInfo;
using std::string;
using std::vector;
#define HARDWARE_ID_STRING_LENGTH 128
string cfstring_to_string( CFStringRef cfstring );
string get_device_path( io_object_t& serial_port );
string get_class_name( io_object_t& obj );
io_registry_entry_t get_parent_iousb_device( io_object_t& serial_port );
string get_string_property( io_object_t& device, const char* property );
uint16_t get_int_property( io_object_t& device, const char* property );
string rtrim(const string& str);
string
cfstring_to_string( CFStringRef cfstring )
{
char cstring[MAXPATHLEN];
string result;
if( cfstring )
{
Boolean success = CFStringGetCString( cfstring,
cstring,
sizeof(cstring),
kCFStringEncodingASCII );
if( success )
result = cstring;
}
return result;
}
string
get_device_path( io_object_t& serial_port )
{
CFTypeRef callout_path;
string device_path;
callout_path = IORegistryEntryCreateCFProperty( serial_port,
CFSTR(kIOCalloutDeviceKey),
kCFAllocatorDefault,
0 );
if (callout_path)
{
if( CFGetTypeID(callout_path) == CFStringGetTypeID() )
device_path = cfstring_to_string( static_cast<CFStringRef>(callout_path) );
CFRelease(callout_path);
}
return device_path;
}
string
get_class_name( io_object_t& obj )
{
string result;
io_name_t class_name;
kern_return_t kern_result;
kern_result = IOObjectGetClass( obj, class_name );
if( kern_result == KERN_SUCCESS )
result = class_name;
return result;
}
io_registry_entry_t
get_parent_iousb_device( io_object_t& serial_port )
{
io_object_t device = serial_port;
io_registry_entry_t parent = 0;
io_registry_entry_t result = 0;
kern_return_t kern_result = KERN_FAILURE;
string name = get_class_name(device);
// Walk the IO Registry tree looking for this devices parent IOUSBDevice.
while( name != "IOUSBDevice" )
{
kern_result = IORegistryEntryGetParentEntry( device,
kIOServicePlane,
&parent );
if(kern_result != KERN_SUCCESS)
{
result = 0;
break;
}
device = parent;
name = get_class_name(device);
}
if(kern_result == KERN_SUCCESS)
result = device;
return result;
}
string
get_string_property( io_object_t& device, const char* property )
{
string property_name;
if( device )
{
CFStringRef property_as_cfstring = CFStringCreateWithCString (
kCFAllocatorDefault,
property,
kCFStringEncodingASCII );
CFTypeRef name_as_cfstring = IORegistryEntryCreateCFProperty(
device,
property_as_cfstring,
kCFAllocatorDefault,
0 );
if( name_as_cfstring )
{
if( CFGetTypeID(name_as_cfstring) == CFStringGetTypeID() )
property_name = cfstring_to_string( static_cast<CFStringRef>(name_as_cfstring) );
CFRelease(name_as_cfstring);
}
if(property_as_cfstring)
CFRelease(property_as_cfstring);
}
return property_name;
}
uint16_t
get_int_property( io_object_t& device, const char* property )
{
uint16_t result = 0;
if( device )
{
CFStringRef property_as_cfstring = CFStringCreateWithCString (
kCFAllocatorDefault,
property,
kCFStringEncodingASCII );
CFTypeRef number = IORegistryEntryCreateCFProperty( device,
property_as_cfstring,
kCFAllocatorDefault,
0 );
if(property_as_cfstring)
CFRelease(property_as_cfstring);
if( number )
{
if( CFGetTypeID(number) == CFNumberGetTypeID() )
{
bool success = CFNumberGetValue( static_cast<CFNumberRef>(number),
kCFNumberSInt16Type,
&result );
if( !success )
result = 0;
}
CFRelease(number);
}
}
return result;
}
string rtrim(const string& str)
{
string result = str;
string whitespace = " \t\f\v\n\r";
std::size_t found = result.find_last_not_of(whitespace);
if (found != std::string::npos)
result.erase(found+1);
else
result.clear();
return result;
}
vector<PortInfo>
serial::list_ports(void)
{
vector<PortInfo> devices_found;
CFMutableDictionaryRef classes_to_match;
io_iterator_t serial_port_iterator;
io_object_t serial_port;
mach_port_t master_port;
kern_return_t kern_result;
kern_result = IOMasterPort(MACH_PORT_NULL, &master_port);
if(kern_result != KERN_SUCCESS)
return devices_found;
classes_to_match = IOServiceMatching(kIOSerialBSDServiceValue);
if (classes_to_match == NULL)
return devices_found;
CFDictionarySetValue( classes_to_match,
CFSTR(kIOSerialBSDTypeKey),
CFSTR(kIOSerialBSDAllTypes) );
kern_result = IOServiceGetMatchingServices(master_port, classes_to_match, &serial_port_iterator);
if (KERN_SUCCESS != kern_result)
return devices_found;
while ( (serial_port = IOIteratorNext(serial_port_iterator)) )
{
string device_path = get_device_path( serial_port );
io_registry_entry_t parent = get_parent_iousb_device( serial_port );
IOObjectRelease(serial_port);
if( device_path.empty() )
continue;
PortInfo port_info;
port_info.port = device_path;
port_info.description = "n/a";
port_info.hardware_id = "n/a";
string device_name = rtrim( get_string_property( parent, "USB Product Name" ) );
string vendor_name = rtrim( get_string_property( parent, "USB Vendor Name") );
string description = rtrim( vendor_name + " " + device_name );
if( !description.empty() )
port_info.description = description;
string serial_number = rtrim(get_string_property( parent, "USB Serial Number" ) );
uint16_t vendor_id = get_int_property( parent, "idVendor" );
uint16_t product_id = get_int_property( parent, "idProduct" );
if( vendor_id && product_id )
{
char cstring[HARDWARE_ID_STRING_LENGTH];
if(serial_number.empty())
serial_number = "None";
int ret = snprintf( cstring, HARDWARE_ID_STRING_LENGTH, "USB VID:PID=%04x:%04x SNR=%s",
vendor_id,
product_id,
serial_number.c_str() );
if( (ret >= 0) && (ret < HARDWARE_ID_STRING_LENGTH) )
port_info.hardware_id = cstring;
}
devices_found.push_back(port_info);
}
IOObjectRelease(serial_port_iterator);
return devices_found;
}
#endif // defined(__APPLE__)

View File

@@ -1,152 +0,0 @@
#if defined(_WIN32)
/*
* Copyright (c) 2014 Craig Lilley <cralilley@gmail.com>
* This software is made available under the terms of the MIT licence.
* A copy of the licence can be obtained from:
* http://opensource.org/licenses/MIT
*/
#include "serial/serial.h"
#include <tchar.h>
#include <windows.h>
#include <setupapi.h>
#include <initguid.h>
#include <devguid.h>
#include <cstring>
using serial::PortInfo;
using std::vector;
using std::string;
static const DWORD port_name_max_length = 256;
static const DWORD friendly_name_max_length = 256;
static const DWORD hardware_id_max_length = 256;
// Convert a wide Unicode string to an UTF8 string
std::string utf8_encode(const std::wstring &wstr)
{
int size_needed = WideCharToMultiByte(CP_UTF8, 0, &wstr[0], (int)wstr.size(), NULL, 0, NULL, NULL);
std::string strTo( size_needed, 0 );
WideCharToMultiByte (CP_UTF8, 0, &wstr[0], (int)wstr.size(), &strTo[0], size_needed, NULL, NULL);
return strTo;
}
vector<PortInfo>
serial::list_ports()
{
vector<PortInfo> devices_found;
HDEVINFO device_info_set = SetupDiGetClassDevs(
(const GUID *) &GUID_DEVCLASS_PORTS,
NULL,
NULL,
DIGCF_PRESENT);
unsigned int device_info_set_index = 0;
SP_DEVINFO_DATA device_info_data;
device_info_data.cbSize = sizeof(SP_DEVINFO_DATA);
while(SetupDiEnumDeviceInfo(device_info_set, device_info_set_index, &device_info_data))
{
device_info_set_index++;
// Get port name
HKEY hkey = SetupDiOpenDevRegKey(
device_info_set,
&device_info_data,
DICS_FLAG_GLOBAL,
0,
DIREG_DEV,
KEY_READ);
TCHAR port_name[port_name_max_length];
DWORD port_name_length = port_name_max_length;
LONG return_code = RegQueryValueEx(
hkey,
_T("PortName"),
NULL,
NULL,
(LPBYTE)port_name,
&port_name_length);
RegCloseKey(hkey);
if(return_code != EXIT_SUCCESS)
continue;
if(port_name_length > 0 && port_name_length <= port_name_max_length)
port_name[port_name_length-1] = '\0';
else
port_name[0] = '\0';
// Ignore parallel ports
if(_tcsstr(port_name, _T("LPT")) != NULL)
continue;
// Get port friendly name
TCHAR friendly_name[friendly_name_max_length];
DWORD friendly_name_actual_length = 0;
BOOL got_friendly_name = SetupDiGetDeviceRegistryProperty(
device_info_set,
&device_info_data,
SPDRP_FRIENDLYNAME,
NULL,
(PBYTE)friendly_name,
friendly_name_max_length,
&friendly_name_actual_length);
if(got_friendly_name == TRUE && friendly_name_actual_length > 0)
friendly_name[friendly_name_actual_length-1] = '\0';
else
friendly_name[0] = '\0';
// Get hardware ID
TCHAR hardware_id[hardware_id_max_length];
DWORD hardware_id_actual_length = 0;
BOOL got_hardware_id = SetupDiGetDeviceRegistryProperty(
device_info_set,
&device_info_data,
SPDRP_HARDWAREID,
NULL,
(PBYTE)hardware_id,
hardware_id_max_length,
&hardware_id_actual_length);
if(got_hardware_id == TRUE && hardware_id_actual_length > 0)
hardware_id[hardware_id_actual_length-1] = '\0';
else
hardware_id[0] = '\0';
#ifdef UNICODE
std::string portName = utf8_encode(port_name);
std::string friendlyName = utf8_encode(friendly_name);
std::string hardwareId = utf8_encode(hardware_id);
#else
std::string portName = port_name;
std::string friendlyName = friendly_name;
std::string hardwareId = hardware_id;
#endif
PortInfo port_entry;
port_entry.port = portName;
port_entry.description = friendlyName;
port_entry.hardware_id = hardwareId;
devices_found.push_back(port_entry);
}
SetupDiDestroyDeviceInfoList(device_info_set);
return devices_found;
}
#endif // #if defined(_WIN32)

File diff suppressed because it is too large Load Diff

View File

@@ -1,646 +0,0 @@
#if defined(_WIN32)
/* Copyright 2012 William Woodall and John Harrison */
#include <sstream>
#include "serial/impl/win.h"
using std::string;
using std::wstring;
using std::stringstream;
using std::invalid_argument;
using serial::Serial;
using serial::Timeout;
using serial::bytesize_t;
using serial::parity_t;
using serial::stopbits_t;
using serial::flowcontrol_t;
using serial::SerialException;
using serial::PortNotOpenedException;
using serial::IOException;
inline wstring
_prefix_port_if_needed(const wstring &input)
{
static wstring windows_com_port_prefix = L"\\\\.\\";
if (input.compare(0, windows_com_port_prefix.size(), windows_com_port_prefix) != 0)
{
return windows_com_port_prefix + input;
}
return input;
}
Serial::SerialImpl::SerialImpl (const string &port, unsigned long baudrate,
bytesize_t bytesize,
parity_t parity, stopbits_t stopbits,
flowcontrol_t flowcontrol)
: port_ (port.begin(), port.end()), fd_ (INVALID_HANDLE_VALUE), is_open_ (false),
baudrate_ (baudrate), parity_ (parity),
bytesize_ (bytesize), stopbits_ (stopbits), flowcontrol_ (flowcontrol)
{
if (port_.empty () == false)
open ();
read_mutex = CreateMutex(NULL, false, NULL);
write_mutex = CreateMutex(NULL, false, NULL);
}
Serial::SerialImpl::~SerialImpl ()
{
this->close();
CloseHandle(read_mutex);
CloseHandle(write_mutex);
}
void
Serial::SerialImpl::open ()
{
if (port_.empty ()) {
throw invalid_argument ("Empty port is invalid.");
}
if (is_open_ == true) {
throw SerialException ("Serial port already open.");
}
// See: https://github.com/wjwwood/serial/issues/84
wstring port_with_prefix = _prefix_port_if_needed(port_);
LPCWSTR lp_port = port_with_prefix.c_str();
fd_ = CreateFileW(lp_port,
GENERIC_READ | GENERIC_WRITE,
0,
0,
OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL,
0);
if (fd_ == INVALID_HANDLE_VALUE) {
DWORD create_file_err = GetLastError();
stringstream ss;
switch (create_file_err) {
case ERROR_FILE_NOT_FOUND:
// Use this->getPort to convert to a std::string
ss << "Specified port, " << this->getPort() << ", does not exist.";
THROW (IOException, ss.str().c_str());
default:
ss << "Unknown error opening the serial port: " << create_file_err;
THROW (IOException, ss.str().c_str());
}
}
reconfigurePort();
is_open_ = true;
}
void
Serial::SerialImpl::reconfigurePort ()
{
if (fd_ == INVALID_HANDLE_VALUE) {
// Can only operate on a valid file descriptor
THROW (IOException, "Invalid file descriptor, is the serial port open?");
}
DCB dcbSerialParams = {0};
dcbSerialParams.DCBlength=sizeof(dcbSerialParams);
if (!GetCommState(fd_, &dcbSerialParams)) {
//error getting state
THROW (IOException, "Error getting the serial port state.");
}
// setup baud rate
switch (baudrate_) {
#ifdef CBR_0
case 0: dcbSerialParams.BaudRate = CBR_0; break;
#endif
#ifdef CBR_50
case 50: dcbSerialParams.BaudRate = CBR_50; break;
#endif
#ifdef CBR_75
case 75: dcbSerialParams.BaudRate = CBR_75; break;
#endif
#ifdef CBR_110
case 110: dcbSerialParams.BaudRate = CBR_110; break;
#endif
#ifdef CBR_134
case 134: dcbSerialParams.BaudRate = CBR_134; break;
#endif
#ifdef CBR_150
case 150: dcbSerialParams.BaudRate = CBR_150; break;
#endif
#ifdef CBR_200
case 200: dcbSerialParams.BaudRate = CBR_200; break;
#endif
#ifdef CBR_300
case 300: dcbSerialParams.BaudRate = CBR_300; break;
#endif
#ifdef CBR_600
case 600: dcbSerialParams.BaudRate = CBR_600; break;
#endif
#ifdef CBR_1200
case 1200: dcbSerialParams.BaudRate = CBR_1200; break;
#endif
#ifdef CBR_1800
case 1800: dcbSerialParams.BaudRate = CBR_1800; break;
#endif
#ifdef CBR_2400
case 2400: dcbSerialParams.BaudRate = CBR_2400; break;
#endif
#ifdef CBR_4800
case 4800: dcbSerialParams.BaudRate = CBR_4800; break;
#endif
#ifdef CBR_7200
case 7200: dcbSerialParams.BaudRate = CBR_7200; break;
#endif
#ifdef CBR_9600
case 9600: dcbSerialParams.BaudRate = CBR_9600; break;
#endif
#ifdef CBR_14400
case 14400: dcbSerialParams.BaudRate = CBR_14400; break;
#endif
#ifdef CBR_19200
case 19200: dcbSerialParams.BaudRate = CBR_19200; break;
#endif
#ifdef CBR_28800
case 28800: dcbSerialParams.BaudRate = CBR_28800; break;
#endif
#ifdef CBR_57600
case 57600: dcbSerialParams.BaudRate = CBR_57600; break;
#endif
#ifdef CBR_76800
case 76800: dcbSerialParams.BaudRate = CBR_76800; break;
#endif
#ifdef CBR_38400
case 38400: dcbSerialParams.BaudRate = CBR_38400; break;
#endif
#ifdef CBR_115200
case 115200: dcbSerialParams.BaudRate = CBR_115200; break;
#endif
#ifdef CBR_128000
case 128000: dcbSerialParams.BaudRate = CBR_128000; break;
#endif
#ifdef CBR_153600
case 153600: dcbSerialParams.BaudRate = CBR_153600; break;
#endif
#ifdef CBR_230400
case 230400: dcbSerialParams.BaudRate = CBR_230400; break;
#endif
#ifdef CBR_256000
case 256000: dcbSerialParams.BaudRate = CBR_256000; break;
#endif
#ifdef CBR_460800
case 460800: dcbSerialParams.BaudRate = CBR_460800; break;
#endif
#ifdef CBR_921600
case 921600: dcbSerialParams.BaudRate = CBR_921600; break;
#endif
default:
// Try to blindly assign it
dcbSerialParams.BaudRate = baudrate_;
}
// setup char len
if (bytesize_ == eightbits)
dcbSerialParams.ByteSize = 8;
else if (bytesize_ == sevenbits)
dcbSerialParams.ByteSize = 7;
else if (bytesize_ == sixbits)
dcbSerialParams.ByteSize = 6;
else if (bytesize_ == fivebits)
dcbSerialParams.ByteSize = 5;
else
throw invalid_argument ("invalid char len");
// setup stopbits
if (stopbits_ == stopbits_one)
dcbSerialParams.StopBits = ONESTOPBIT;
else if (stopbits_ == stopbits_one_point_five)
dcbSerialParams.StopBits = ONE5STOPBITS;
else if (stopbits_ == stopbits_two)
dcbSerialParams.StopBits = TWOSTOPBITS;
else
throw invalid_argument ("invalid stop bit");
// setup parity
if (parity_ == parity_none) {
dcbSerialParams.Parity = NOPARITY;
} else if (parity_ == parity_even) {
dcbSerialParams.Parity = EVENPARITY;
} else if (parity_ == parity_odd) {
dcbSerialParams.Parity = ODDPARITY;
} else if (parity_ == parity_mark) {
dcbSerialParams.Parity = MARKPARITY;
} else if (parity_ == parity_space) {
dcbSerialParams.Parity = SPACEPARITY;
} else {
throw invalid_argument ("invalid parity");
}
// setup flowcontrol
if (flowcontrol_ == flowcontrol_none) {
dcbSerialParams.fOutxCtsFlow = false;
dcbSerialParams.fRtsControl = RTS_CONTROL_DISABLE;
dcbSerialParams.fOutX = false;
dcbSerialParams.fInX = false;
}
if (flowcontrol_ == flowcontrol_software) {
dcbSerialParams.fOutxCtsFlow = false;
dcbSerialParams.fRtsControl = RTS_CONTROL_DISABLE;
dcbSerialParams.fOutX = true;
dcbSerialParams.fInX = true;
}
if (flowcontrol_ == flowcontrol_hardware) {
dcbSerialParams.fOutxCtsFlow = true;
dcbSerialParams.fRtsControl = RTS_CONTROL_HANDSHAKE;
dcbSerialParams.fOutX = false;
dcbSerialParams.fInX = false;
}
// activate settings
if (!SetCommState(fd_, &dcbSerialParams)){
CloseHandle(fd_);
THROW (IOException, "Error setting serial port settings.");
}
// Setup timeouts
COMMTIMEOUTS timeouts = {0};
timeouts.ReadIntervalTimeout = timeout_.inter_byte_timeout;
timeouts.ReadTotalTimeoutConstant = timeout_.read_timeout_constant;
timeouts.ReadTotalTimeoutMultiplier = timeout_.read_timeout_multiplier;
timeouts.WriteTotalTimeoutConstant = timeout_.write_timeout_constant;
timeouts.WriteTotalTimeoutMultiplier = timeout_.write_timeout_multiplier;
if (!SetCommTimeouts(fd_, &timeouts)) {
THROW (IOException, "Error setting timeouts.");
}
}
void
Serial::SerialImpl::close ()
{
if (is_open_ == true) {
if (fd_ != INVALID_HANDLE_VALUE) {
int ret;
ret = CloseHandle(fd_);
if (ret == 0) {
stringstream ss;
ss << "Error while closing serial port: " << GetLastError();
THROW (IOException, ss.str().c_str());
} else {
fd_ = INVALID_HANDLE_VALUE;
}
}
is_open_ = false;
}
}
bool
Serial::SerialImpl::isOpen () const
{
return is_open_;
}
size_t
Serial::SerialImpl::available ()
{
if (!is_open_) {
return 0;
}
COMSTAT cs;
if (!ClearCommError(fd_, NULL, &cs)) {
stringstream ss;
ss << "Error while checking status of the serial port: " << GetLastError();
THROW (IOException, ss.str().c_str());
}
return static_cast<size_t>(cs.cbInQue);
}
bool
Serial::SerialImpl::waitReadable (uint32_t /*timeout*/)
{
THROW (IOException, "waitReadable is not implemented on Windows.");
return false;
}
void
Serial::SerialImpl::waitByteTimes (size_t /*count*/)
{
THROW (IOException, "waitByteTimes is not implemented on Windows.");
}
size_t
Serial::SerialImpl::read (uint8_t *buf, size_t size)
{
if (!is_open_) {
throw PortNotOpenedException ("Serial::read");
}
DWORD bytes_read;
if (!ReadFile(fd_, buf, static_cast<DWORD>(size), &bytes_read, NULL)) {
stringstream ss;
ss << "Error while reading from the serial port: " << GetLastError();
THROW (IOException, ss.str().c_str());
}
return (size_t) (bytes_read);
}
size_t
Serial::SerialImpl::write (const uint8_t *data, size_t length)
{
if (is_open_ == false) {
throw PortNotOpenedException ("Serial::write");
}
DWORD bytes_written;
if (!WriteFile(fd_, data, static_cast<DWORD>(length), &bytes_written, NULL)) {
stringstream ss;
ss << "Error while writing to the serial port: " << GetLastError();
THROW (IOException, ss.str().c_str());
}
return (size_t) (bytes_written);
}
void
Serial::SerialImpl::setPort (const string &port)
{
port_ = wstring(port.begin(), port.end());
}
string
Serial::SerialImpl::getPort () const
{
return string(port_.begin(), port_.end());
}
void
Serial::SerialImpl::setTimeout (serial::Timeout &timeout)
{
timeout_ = timeout;
if (is_open_) {
reconfigurePort ();
}
}
serial::Timeout
Serial::SerialImpl::getTimeout () const
{
return timeout_;
}
void
Serial::SerialImpl::setBaudrate (unsigned long baudrate)
{
baudrate_ = baudrate;
if (is_open_) {
reconfigurePort ();
}
}
unsigned long
Serial::SerialImpl::getBaudrate () const
{
return baudrate_;
}
void
Serial::SerialImpl::setBytesize (serial::bytesize_t bytesize)
{
bytesize_ = bytesize;
if (is_open_) {
reconfigurePort ();
}
}
serial::bytesize_t
Serial::SerialImpl::getBytesize () const
{
return bytesize_;
}
void
Serial::SerialImpl::setParity (serial::parity_t parity)
{
parity_ = parity;
if (is_open_) {
reconfigurePort ();
}
}
serial::parity_t
Serial::SerialImpl::getParity () const
{
return parity_;
}
void
Serial::SerialImpl::setStopbits (serial::stopbits_t stopbits)
{
stopbits_ = stopbits;
if (is_open_) {
reconfigurePort ();
}
}
serial::stopbits_t
Serial::SerialImpl::getStopbits () const
{
return stopbits_;
}
void
Serial::SerialImpl::setFlowcontrol (serial::flowcontrol_t flowcontrol)
{
flowcontrol_ = flowcontrol;
if (is_open_) {
reconfigurePort ();
}
}
serial::flowcontrol_t
Serial::SerialImpl::getFlowcontrol () const
{
return flowcontrol_;
}
void
Serial::SerialImpl::flush ()
{
if (is_open_ == false) {
throw PortNotOpenedException ("Serial::flush");
}
FlushFileBuffers (fd_);
}
void
Serial::SerialImpl::flushInput ()
{
if (is_open_ == false) {
throw PortNotOpenedException("Serial::flushInput");
}
PurgeComm(fd_, PURGE_RXCLEAR);
}
void
Serial::SerialImpl::flushOutput ()
{
if (is_open_ == false) {
throw PortNotOpenedException("Serial::flushOutput");
}
PurgeComm(fd_, PURGE_TXCLEAR);
}
void
Serial::SerialImpl::sendBreak (int /*duration*/)
{
THROW (IOException, "sendBreak is not supported on Windows.");
}
void
Serial::SerialImpl::setBreak (bool level)
{
if (is_open_ == false) {
throw PortNotOpenedException ("Serial::setBreak");
}
if (level) {
EscapeCommFunction (fd_, SETBREAK);
} else {
EscapeCommFunction (fd_, CLRBREAK);
}
}
void
Serial::SerialImpl::setRTS (bool level)
{
if (is_open_ == false) {
throw PortNotOpenedException ("Serial::setRTS");
}
if (level) {
EscapeCommFunction (fd_, SETRTS);
} else {
EscapeCommFunction (fd_, CLRRTS);
}
}
void
Serial::SerialImpl::setDTR (bool level)
{
if (is_open_ == false) {
throw PortNotOpenedException ("Serial::setDTR");
}
if (level) {
EscapeCommFunction (fd_, SETDTR);
} else {
EscapeCommFunction (fd_, CLRDTR);
}
}
bool
Serial::SerialImpl::waitForChange ()
{
if (is_open_ == false) {
throw PortNotOpenedException ("Serial::waitForChange");
}
DWORD dwCommEvent;
if (!SetCommMask(fd_, EV_CTS | EV_DSR | EV_RING | EV_RLSD)) {
// Error setting communications mask
return false;
}
if (!WaitCommEvent(fd_, &dwCommEvent, NULL)) {
// An error occurred waiting for the event.
return false;
} else {
// Event has occurred.
return true;
}
}
bool
Serial::SerialImpl::getCTS ()
{
if (is_open_ == false) {
throw PortNotOpenedException ("Serial::getCTS");
}
DWORD dwModemStatus;
if (!GetCommModemStatus(fd_, &dwModemStatus)) {
THROW (IOException, "Error getting the status of the CTS line.");
}
return (MS_CTS_ON & dwModemStatus) != 0;
}
bool
Serial::SerialImpl::getDSR ()
{
if (is_open_ == false) {
throw PortNotOpenedException ("Serial::getDSR");
}
DWORD dwModemStatus;
if (!GetCommModemStatus(fd_, &dwModemStatus)) {
THROW (IOException, "Error getting the status of the DSR line.");
}
return (MS_DSR_ON & dwModemStatus) != 0;
}
bool
Serial::SerialImpl::getRI()
{
if (is_open_ == false) {
throw PortNotOpenedException ("Serial::getRI");
}
DWORD dwModemStatus;
if (!GetCommModemStatus(fd_, &dwModemStatus)) {
THROW (IOException, "Error getting the status of the RI line.");
}
return (MS_RING_ON & dwModemStatus) != 0;
}
bool
Serial::SerialImpl::getCD()
{
if (is_open_ == false) {
throw PortNotOpenedException ("Serial::getCD");
}
DWORD dwModemStatus;
if (!GetCommModemStatus(fd_, &dwModemStatus)) {
// Error in GetCommModemStatus;
THROW (IOException, "Error getting the status of the CD line.");
}
return (MS_RLSD_ON & dwModemStatus) != 0;
}
void
Serial::SerialImpl::readLock()
{
if (WaitForSingleObject(read_mutex, INFINITE) != WAIT_OBJECT_0) {
THROW (IOException, "Error claiming read mutex.");
}
}
void
Serial::SerialImpl::readUnlock()
{
if (!ReleaseMutex(read_mutex)) {
THROW (IOException, "Error releasing read mutex.");
}
}
void
Serial::SerialImpl::writeLock()
{
if (WaitForSingleObject(write_mutex, INFINITE) != WAIT_OBJECT_0) {
THROW (IOException, "Error claiming write mutex.");
}
}
void
Serial::SerialImpl::writeUnlock()
{
if (!ReleaseMutex(write_mutex)) {
THROW (IOException, "Error releasing write mutex.");
}
}
#endif // #if defined(_WIN32)

View File

@@ -1,432 +0,0 @@
/* Copyright 2012 William Woodall and John Harrison */
#include <algorithm>
#if !defined(_WIN32) && !defined(__OpenBSD__) && !defined(__FreeBSD__)
# include <alloca.h>
#endif
#if defined (__MINGW32__)
# define alloca __builtin_alloca
#endif
#include "serial/serial.h"
#ifdef _WIN32
#include "serial/impl/win.h"
#else
#include "serial/impl/unix.h"
#endif
using std::invalid_argument;
using std::min;
using std::numeric_limits;
using std::vector;
using std::size_t;
using std::string;
using serial::Serial;
using serial::SerialException;
using serial::IOException;
using serial::bytesize_t;
using serial::parity_t;
using serial::stopbits_t;
using serial::flowcontrol_t;
class Serial::ScopedReadLock {
public:
ScopedReadLock(SerialImpl *pimpl) : pimpl_(pimpl) {
this->pimpl_->readLock();
}
~ScopedReadLock() {
this->pimpl_->readUnlock();
}
private:
// Disable copy constructors
ScopedReadLock(const ScopedReadLock&);
const ScopedReadLock& operator=(ScopedReadLock);
SerialImpl *pimpl_;
};
class Serial::ScopedWriteLock {
public:
ScopedWriteLock(SerialImpl *pimpl) : pimpl_(pimpl) {
this->pimpl_->writeLock();
}
~ScopedWriteLock() {
this->pimpl_->writeUnlock();
}
private:
// Disable copy constructors
ScopedWriteLock(const ScopedWriteLock&);
const ScopedWriteLock& operator=(ScopedWriteLock);
SerialImpl *pimpl_;
};
Serial::Serial (const string &port, uint32_t baudrate, serial::Timeout timeout,
bytesize_t bytesize, parity_t parity, stopbits_t stopbits,
flowcontrol_t flowcontrol)
: pimpl_(new SerialImpl (port, baudrate, bytesize, parity,
stopbits, flowcontrol))
{
pimpl_->setTimeout(timeout);
}
Serial::~Serial ()
{
delete pimpl_;
}
void
Serial::open ()
{
pimpl_->open ();
}
void
Serial::close ()
{
pimpl_->close ();
}
bool
Serial::isOpen () const
{
return pimpl_->isOpen ();
}
size_t
Serial::available ()
{
return pimpl_->available ();
}
bool
Serial::waitReadable ()
{
serial::Timeout timeout(pimpl_->getTimeout ());
return pimpl_->waitReadable(timeout.read_timeout_constant);
}
void
Serial::waitByteTimes (size_t count)
{
pimpl_->waitByteTimes(count);
}
size_t
Serial::read_ (uint8_t *buffer, size_t size)
{
return this->pimpl_->read (buffer, size);
}
size_t
Serial::read (uint8_t *buffer, size_t size)
{
ScopedReadLock lock(this->pimpl_);
return this->pimpl_->read (buffer, size);
}
size_t
Serial::read (std::vector<uint8_t> &buffer, size_t size)
{
ScopedReadLock lock(this->pimpl_);
uint8_t *buffer_ = new uint8_t[size];
size_t bytes_read = 0;
try {
bytes_read = this->pimpl_->read (buffer_, size);
}
catch (const std::exception &e) {
delete[] buffer_;
throw;
}
buffer.insert (buffer.end (), buffer_, buffer_+bytes_read);
delete[] buffer_;
return bytes_read;
}
size_t
Serial::read (std::string &buffer, size_t size)
{
ScopedReadLock lock(this->pimpl_);
uint8_t *buffer_ = new uint8_t[size];
size_t bytes_read = 0;
try {
bytes_read = this->pimpl_->read (buffer_, size);
}
catch (const std::exception &e) {
delete[] buffer_;
throw;
}
buffer.append (reinterpret_cast<const char*>(buffer_), bytes_read);
delete[] buffer_;
return bytes_read;
}
string
Serial::read (size_t size)
{
std::string buffer;
this->read (buffer, size);
return buffer;
}
size_t
Serial::readline (string &buffer, size_t size, string eol)
{
ScopedReadLock lock(this->pimpl_);
size_t eol_len = eol.length ();
uint8_t *buffer_ = static_cast<uint8_t*>
(alloca (size * sizeof (uint8_t)));
size_t read_so_far = 0;
while (true)
{
size_t bytes_read = this->read_ (buffer_ + read_so_far, 1);
read_so_far += bytes_read;
if (bytes_read == 0) {
break; // Timeout occured on reading 1 byte
}
if(read_so_far < eol_len) continue;
if (string (reinterpret_cast<const char*>
(buffer_ + read_so_far - eol_len), eol_len) == eol) {
break; // EOL found
}
if (read_so_far == size) {
break; // Reached the maximum read length
}
}
buffer.append(reinterpret_cast<const char*> (buffer_), read_so_far);
return read_so_far;
}
string
Serial::readline (size_t size, string eol)
{
std::string buffer;
this->readline (buffer, size, eol);
return buffer;
}
vector<string>
Serial::readlines (size_t size, string eol)
{
ScopedReadLock lock(this->pimpl_);
std::vector<std::string> lines;
size_t eol_len = eol.length ();
uint8_t *buffer_ = static_cast<uint8_t*>
(alloca (size * sizeof (uint8_t)));
size_t read_so_far = 0;
size_t start_of_line = 0;
while (read_so_far < size) {
size_t bytes_read = this->read_ (buffer_+read_so_far, 1);
read_so_far += bytes_read;
if (bytes_read == 0) {
if (start_of_line != read_so_far) {
lines.push_back (
string (reinterpret_cast<const char*> (buffer_ + start_of_line),
read_so_far - start_of_line));
}
break; // Timeout occured on reading 1 byte
}
if(read_so_far < eol_len) continue;
if (string (reinterpret_cast<const char*>
(buffer_ + read_so_far - eol_len), eol_len) == eol) {
// EOL found
lines.push_back(
string(reinterpret_cast<const char*> (buffer_ + start_of_line),
read_so_far - start_of_line));
start_of_line = read_so_far;
}
if (read_so_far == size) {
if (start_of_line != read_so_far) {
lines.push_back(
string(reinterpret_cast<const char*> (buffer_ + start_of_line),
read_so_far - start_of_line));
}
break; // Reached the maximum read length
}
}
return lines;
}
size_t
Serial::write (const string &data)
{
ScopedWriteLock lock(this->pimpl_);
return this->write_ (reinterpret_cast<const uint8_t*>(data.c_str()),
data.length());
}
size_t
Serial::write (const std::vector<uint8_t> &data)
{
ScopedWriteLock lock(this->pimpl_);
return this->write_ (&data[0], data.size());
}
size_t
Serial::write (const uint8_t *data, size_t size)
{
ScopedWriteLock lock(this->pimpl_);
return this->write_(data, size);
}
size_t
Serial::write_ (const uint8_t *data, size_t length)
{
return pimpl_->write (data, length);
}
void
Serial::setPort (const string &port)
{
ScopedReadLock rlock(this->pimpl_);
ScopedWriteLock wlock(this->pimpl_);
bool was_open = pimpl_->isOpen ();
if (was_open) close();
pimpl_->setPort (port);
if (was_open) open ();
}
string
Serial::getPort () const
{
return pimpl_->getPort ();
}
void
Serial::setTimeout (serial::Timeout &timeout)
{
pimpl_->setTimeout (timeout);
}
serial::Timeout
Serial::getTimeout () const {
return pimpl_->getTimeout ();
}
void
Serial::setBaudrate (uint32_t baudrate)
{
pimpl_->setBaudrate (baudrate);
}
uint32_t
Serial::getBaudrate () const
{
return uint32_t(pimpl_->getBaudrate ());
}
void
Serial::setBytesize (bytesize_t bytesize)
{
pimpl_->setBytesize (bytesize);
}
bytesize_t
Serial::getBytesize () const
{
return pimpl_->getBytesize ();
}
void
Serial::setParity (parity_t parity)
{
pimpl_->setParity (parity);
}
parity_t
Serial::getParity () const
{
return pimpl_->getParity ();
}
void
Serial::setStopbits (stopbits_t stopbits)
{
pimpl_->setStopbits (stopbits);
}
stopbits_t
Serial::getStopbits () const
{
return pimpl_->getStopbits ();
}
void
Serial::setFlowcontrol (flowcontrol_t flowcontrol)
{
pimpl_->setFlowcontrol (flowcontrol);
}
flowcontrol_t
Serial::getFlowcontrol () const
{
return pimpl_->getFlowcontrol ();
}
void Serial::flush ()
{
ScopedReadLock rlock(this->pimpl_);
ScopedWriteLock wlock(this->pimpl_);
pimpl_->flush ();
}
void Serial::flushInput ()
{
ScopedReadLock lock(this->pimpl_);
pimpl_->flushInput ();
}
void Serial::flushOutput ()
{
ScopedWriteLock lock(this->pimpl_);
pimpl_->flushOutput ();
}
void Serial::sendBreak (int duration)
{
pimpl_->sendBreak (duration);
}
void Serial::setBreak (bool level)
{
pimpl_->setBreak (level);
}
void Serial::setRTS (bool level)
{
pimpl_->setRTS (level);
}
void Serial::setDTR (bool level)
{
pimpl_->setDTR (level);
}
bool Serial::waitForChange()
{
return pimpl_->waitForChange();
}
bool Serial::getCTS ()
{
return pimpl_->getCTS ();
}
bool Serial::getDSR ()
{
return pimpl_->getDSR ();
}
bool Serial::getRI ()
{
return pimpl_->getRI ();
}
bool Serial::getCD ()
{
return pimpl_->getCD ();
}