Add model and include files for Ankit's Skeletal Animation tutorial.

This commit is contained in:
Joey de Vries
2021-02-07 19:11:46 +01:00
parent dfcf5ed149
commit 01a2962d01
10 changed files with 8658 additions and 0 deletions

View File

@@ -0,0 +1,110 @@
#pragma once
#include <vector>
#include <map>
#include <glm/glm.hpp>
#include <assimp/scene.h>
#include <learnopengl/bone.h>
#include <functional>
#include <learnopengl/animdata.h>
#include <learnopengl/model.h>
struct AssimpNodeData
{
glm::mat4 transformation;
std::string name;
int childrenCount;
std::vector<AssimpNodeData> children;
};
class Animation
{
public:
Animation() = default;
Animation(const std::string& animationPath, Model* model)
{
Assimp::Importer importer;
const aiScene* scene = importer.ReadFile(animationPath, aiProcess_Triangulate);
assert(scene && scene->mRootNode);
auto animation = scene->mAnimations[0];
m_Duration = animation->mDuration;
m_TicksPerSecond = animation->mTicksPerSecond;
aiMatrix4x4 globalTransformation = scene->mRootNode->mTransformation;
globalTransformation = globalTransformation.Inverse();
ReadHeirarchyData(m_RootNode, scene->mRootNode);
SetupBones(animation, *model);
}
~Animation()
{
}
Bone* FindBone(const std::string& name)
{
auto iter = std::find_if(m_Bones.begin(), m_Bones.end(),
[&](const Bone& Bone)
{
return Bone.GetBoneName() == name;
}
);
if (iter == m_Bones.end()) return nullptr;
else return &(*iter);
}
inline float GetTicksPerSecond() { return m_TicksPerSecond; }
inline float GetDuration() { return m_Duration;}
inline const AssimpNodeData& GetRootNode() { return m_RootNode; }
inline const std::map<std::string,BoneInfo>& GetBoneIDMap()
{
return m_BoneInfoMap;
}
private:
void SetupBones(const aiAnimation* animation, Model& model)
{
int size = animation->mNumChannels;
auto& boneInfoMap = model.GetOffsetMatMap();
int& boneCount = model.GetBoneCount();
for (int i = 0; i < size; i++)
{
auto channel = animation->mChannels[i];
std::string boneName = channel->mNodeName.data;
if (boneInfoMap.find(boneName) == boneInfoMap.end())
{
boneInfoMap[boneName].id = boneCount;
boneCount++;
}
m_Bones.push_back(Bone(channel->mNodeName.data,
boneInfoMap[channel->mNodeName.data].id, channel));
}
m_BoneInfoMap = boneInfoMap;
}
void ReadHeirarchyData(AssimpNodeData& dest, const aiNode* src)
{
assert(src);
dest.name = src->mName.data;
dest.transformation = AssimpGLMHelpers::ConvertMatrixToGLMFormat(src->mTransformation);
dest.childrenCount = src->mNumChildren;
for (int i = 0; i < src->mNumChildren; i++)
{
AssimpNodeData newData;
ReadHeirarchyData(newData, src->mChildren[i]);
dest.children.push_back(newData);
}
}
float m_Duration;
int m_TicksPerSecond;
std::vector<Bone> m_Bones;
AssimpNodeData m_RootNode;
std::map<std::string, BoneInfo> m_BoneInfoMap;
};

View File

@@ -0,0 +1,78 @@
#pragma once
#include <glm/glm.hpp>
#include <map>
#include <vector>
#include <assimp/scene.h>
#include <assimp/Importer.hpp>
#include <learnopengl/animation.h>
#include <learnopengl/bone.h>
class Animator
{
public:
Animator::Animator(Animation* current)
{
m_CurrentAnimation = current;
m_CurrentTime = 0.0;
m_Transforms.reserve(100);
for (int i = 0; i < 100; i++)
m_Transforms.push_back(glm::mat4(1.0f));
}
void Animator::UpdateAnimation(float dt)
{
m_DeltaTime = dt;
if (m_CurrentAnimation)
{
m_CurrentTime += m_CurrentAnimation->GetTicksPerSecond() * dt;
m_CurrentTime = fmod(m_CurrentTime, m_CurrentAnimation->GetDuration());
CalculateBoneTransform(&m_CurrentAnimation->GetRootNode(), glm::mat4(1.0f));
}
}
void Animator::PlayAnimation(Animation* pAnimation)
{
m_CurrentAnimation = pAnimation;
m_CurrentTime = 0.0f;
}
void Animator::CalculateBoneTransform(const AssimpNodeData* node, glm::mat4 parentTransform)
{
std::string nodeName = node->name;
glm::mat4 nodeTransform = node->transformation;
Bone* Bone = m_CurrentAnimation->FindBone(nodeName);
if (Bone)
{
Bone->Update(m_CurrentTime);
nodeTransform = Bone->GetLocalTransform();
}
glm::mat4 globalTransformation = parentTransform * nodeTransform;
auto boneInfoMap = m_CurrentAnimation->GetBoneIDMap();
if (boneInfoMap.find(nodeName) != boneInfoMap.end())
{
int index = boneInfoMap[nodeName].id;
glm::mat4 offset = boneInfoMap[nodeName].offset;
m_Transforms[index] = globalTransformation * offset;
}
for (int i = 0; i < node->childrenCount; i++)
CalculateBoneTransform(&node->children[i], globalTransformation);
}
std::vector<glm::mat4> GetPoseTransforms()
{
return m_Transforms;
}
private:
std::vector<glm::mat4> m_Transforms;
Animation* m_CurrentAnimation;
float m_CurrentTime;
float m_DeltaTime;
};

View File

@@ -0,0 +1,19 @@
#pragma once
#include <glm/glm.hpp>
struct BoneInfo
{
/*
For uniquely indentifying the bone and
for indexing bone transformation in shaders
*/
int id;
/*
map from bone name to offset matrix.
offset matrix transforms bone from bone space to local space
*/
glm::mat4 offset;
};
#pragma once

188
includes/learnopengl/bone.h Normal file
View File

@@ -0,0 +1,188 @@
#pragma once
/* Container for bone data */
#include <vector>
#include <assimp/scene.h>
#include <list>
#include <glm/glm.hpp>
#define GLM_ENABLE_EXPERIMENTAL
#include <glm/gtx/quaternion.hpp>
#include "AssimpGLMHelpers.h"
struct KeyPosition
{
glm::vec3 position;
float timeStamp;
};
struct KeyRotation
{
glm::quat orientation;
float timeStamp;
};
struct KeyScale
{
glm::vec3 scale;
float timeStamp;
};
class Bone
{
public:
Bone(const std::string& name, int ID, const aiNodeAnim* channel)
:
m_Name(name),
m_ID(ID),
m_LocalTransform(1.0f)
{
m_NumPositions = channel->mNumPositionKeys;
for (int positionIndex = 0; positionIndex < m_NumPositions; ++positionIndex)
{
aiVector3D aiPosition = channel->mPositionKeys[positionIndex].mValue;
float timeStamp = channel->mPositionKeys[positionIndex].mTime;
KeyPosition data;
data.position = AssimpGLMHelpers::GetGLMVec(aiPosition);
data.timeStamp = timeStamp;
m_Positions.push_back(data);
}
m_NumRotations = channel->mNumRotationKeys;
for (int rotationIndex = 0; rotationIndex < m_NumRotations; ++rotationIndex)
{
aiQuaternion aiOrientation = channel->mRotationKeys[rotationIndex].mValue;
float timeStamp = channel->mRotationKeys[rotationIndex].mTime;
KeyRotation data;
data.orientation = AssimpGLMHelpers::GetGLMQuat(aiOrientation);
data.timeStamp = timeStamp;
m_Rotations.push_back(data);
}
m_NumScalings = channel->mNumScalingKeys;
for (int keyIndex = 0; keyIndex < m_NumScalings; ++keyIndex)
{
aiVector3D scale = channel->mScalingKeys[keyIndex].mValue;
float timeStamp = channel->mScalingKeys[keyIndex].mTime;
KeyScale data;
data.scale = AssimpGLMHelpers::GetGLMVec(scale);
data.timeStamp = timeStamp;
m_Scales.push_back(data);
}
}
void Update(float animationTime)
{
glm::mat4 translation = InterpolatePosition(animationTime);
glm::mat4 rotation = InterpolateRotation(animationTime);
glm::mat4 scale = InterpolateScaling(animationTime);
m_LocalTransform = translation * rotation * scale;
}
glm::mat4 GetLocalTransform() { return m_LocalTransform; }
std::string GetBoneName() const { return m_Name; }
int GetBoneID() { return m_ID; }
int GetPositionIndex(float animationTime)
{
for (int index = 0; index < m_NumPositions - 1; ++index)
{
if (animationTime < m_Positions[index + 1].timeStamp)
return index;
}
assert(0);
}
int GetRotationIndex(float animationTime)
{
for (int index = 0; index < m_NumRotations - 1; ++index)
{
if (animationTime < m_Rotations[index + 1].timeStamp)
return index;
}
assert(0);
}
int GetScaleIndex(float animationTime)
{
for (int index = 0; index < m_NumScalings - 1; ++index)
{
if (animationTime < m_Scales[index + 1].timeStamp)
return index;
}
assert(0);
}
private:
float GetScaleFactor(float lastTimeStamp, float nextTimeStamp, float animationTime)
{
float scaleFactor = 0.0f;
float midWayLength = animationTime - lastTimeStamp;
float framesDiff = nextTimeStamp - lastTimeStamp;
scaleFactor = midWayLength / framesDiff;
return scaleFactor;
}
glm::mat4 InterpolatePosition(float animationTime)
{
if (1 == m_NumPositions)
return glm::translate(glm::mat4(1.0f), m_Positions[0].position);
int p0Index = GetPositionIndex(animationTime);
int p1Index = p0Index + 1;
float scaleFactor = GetScaleFactor(m_Positions[p0Index].timeStamp,
m_Positions[p1Index].timeStamp, animationTime);
glm::vec3 finalPosition = glm::mix(m_Positions[p0Index].position, m_Positions[p1Index].position
, scaleFactor);
return glm::translate(glm::mat4(1.0f), finalPosition);
}
glm::mat4 InterpolateRotation(float animationTime)
{
if (1 == m_NumRotations)
{
auto rotation = glm::normalize(m_Rotations[0].orientation);
return glm::toMat4(rotation);
}
int p0Index = GetRotationIndex(animationTime);
int p1Index = p0Index + 1;
float scaleFactor = GetScaleFactor(m_Rotations[p0Index].timeStamp,
m_Rotations[p1Index].timeStamp, animationTime);
glm::quat finalRotation = glm::slerp(m_Rotations[p0Index].orientation, m_Rotations[p1Index].orientation
, scaleFactor);
finalRotation = glm::normalize(finalRotation);
return glm::toMat4(finalRotation);
}
glm::mat4 Bone::InterpolateScaling(float animationTime)
{
if (1 == m_NumScalings)
return glm::scale(glm::mat4(1.0f), m_Scales[0].scale);
int p0Index = GetScaleIndex(animationTime);
int p1Index = p0Index + 1;
float scaleFactor = GetScaleFactor(m_Scales[p0Index].timeStamp,
m_Scales[p1Index].timeStamp, animationTime);
glm::vec3 finalScale = glm::mix(m_Scales[p0Index].scale, m_Scales[p1Index].scale
, scaleFactor);
return glm::scale(glm::mat4(1.0f), finalScale);
}
std::vector<KeyPosition> m_Positions;
std::vector<KeyRotation> m_Rotations;
std::vector<KeyScale> m_Scales;
int m_NumPositions;
int m_NumRotations;
int m_NumScalings;
glm::mat4 m_LocalTransform;
std::string m_Name;
int m_ID;
};

View File

@@ -0,0 +1,282 @@
#ifndef MODEL_H
#define MODEL_H
#include <glad/glad.h>
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <stb_image.h>
#include <assimp/Importer.hpp>
#include <assimp/scene.h>
#include <assimp/postprocess.h>
#include <learnopengl/mesh.h>
#include <learnopengl/shader.h>
#include <string>
#include <fstream>
#include <sstream>
#include <iostream>
#include <map>
#include <vector>
#include <learnopengl/assimp_glm_helpers.h>
#include <learnopengl/animdata.h>
using namespace std;
class Model
{
public:
// model data
vector<Texture> textures_loaded; // stores all the textures loaded so far, optimization to make sure textures aren't loaded more than once.
vector<Mesh> meshes;
string directory;
bool gammaCorrection;
// constructor, expects a filepath to a 3D model.
Model(string const &path, bool gamma = false) : gammaCorrection(gamma)
{
loadModel(path);
}
// draws the model, and thus all its meshes
void Draw(Shader &shader)
{
for(unsigned int i = 0; i < meshes.size(); i++)
meshes[i].Draw(shader);
}
auto& GetOffsetMatMap() { return m_OffsetMatMap; }
int& GetBoneCount() { return m_BoneCount; }
private:
std::map<string, BoneInfo> m_OffsetMatMap;
int m_BoneCount = 0;
// loads a model with supported ASSIMP extensions from file and stores the resulting meshes in the meshes vector.
void loadModel(string const &path)
{
// read file via ASSIMP
Assimp::Importer importer;
const aiScene* scene = importer.ReadFile(path, aiProcess_Triangulate | aiProcess_GenSmoothNormals | aiProcess_CalcTangentSpace);
// check for errors
if(!scene || scene->mFlags & AI_SCENE_FLAGS_INCOMPLETE || !scene->mRootNode) // if is Not Zero
{
cout << "ERROR::ASSIMP:: " << importer.GetErrorString() << endl;
return;
}
// retrieve the directory path of the filepath
directory = path.substr(0, path.find_last_of('/'));
// process ASSIMP's root node recursively
processNode(scene->mRootNode, scene);
}
// processes a node in a recursive fashion. Processes each individual mesh located at the node and repeats this process on its children nodes (if any).
void processNode(aiNode *node, const aiScene *scene)
{
// process each mesh located at the current node
for(unsigned int i = 0; i < node->mNumMeshes; i++)
{
// the node object only contains indices to index the actual objects in the scene.
// the scene contains all the data, node is just to keep stuff organized (like relations between nodes).
aiMesh* mesh = scene->mMeshes[node->mMeshes[i]];
meshes.push_back(processMesh(mesh, scene));
}
// after we've processed all of the meshes (if any) we then recursively process each of the children nodes
for(unsigned int i = 0; i < node->mNumChildren; i++)
{
processNode(node->mChildren[i], scene);
}
}
void SetVertexBoneDataToDefault(Vertex& vertex)
{
for (int i = 0; i < MAX_BONE_WEIGHTS; i++)
{
vertex.m_BoneIDs[i] = -1;
vertex.m_Weights[i] = 0.0f;
}
}
Mesh processMesh(aiMesh* mesh, const aiScene* scene)
{
vector<Vertex> vertices;
vector<unsigned int> indices;
vector<Texture> textures;
for (unsigned int i = 0; i < mesh->mNumVertices; i++)
{
Vertex vertex;
SetVertexBoneDataToDefault(vertex);
vertex.Position = AssimpGLMHelpers::GetGLMVec(mesh->mVertices[i]);
vertex.Normal = AssimpGLMHelpers::GetGLMVec(mesh->mNormals[i]);
if (mesh->mTextureCoords[0])
{
glm::vec2 vec;
vec.x = mesh->mTextureCoords[0][i].x;
vec.y = mesh->mTextureCoords[0][i].y;
vertex.TexCoords = vec;
}
else
vertex.TexCoords = glm::vec2(0.0f, 0.0f);
vertices.push_back(vertex);
}
for (unsigned int i = 0; i < mesh->mNumFaces; i++)
{
aiFace face = mesh->mFaces[i];
for (unsigned int j = 0; j < face.mNumIndices; j++)
indices.push_back(face.mIndices[j]);
}
aiMaterial* material = scene->mMaterials[mesh->mMaterialIndex];
vector<Texture> diffuseMaps = loadMaterialTextures(material, aiTextureType_DIFFUSE, "texture_diffuse");
textures.insert(textures.end(), diffuseMaps.begin(), diffuseMaps.end());
vector<Texture> specularMaps = loadMaterialTextures(material, aiTextureType_SPECULAR, "texture_specular");
textures.insert(textures.end(), specularMaps.begin(), specularMaps.end());
std::vector<Texture> normalMaps = loadMaterialTextures(material, aiTextureType_HEIGHT, "texture_normal");
textures.insert(textures.end(), normalMaps.begin(), normalMaps.end());
std::vector<Texture> heightMaps = loadMaterialTextures(material, aiTextureType_AMBIENT, "texture_height");
textures.insert(textures.end(), heightMaps.begin(), heightMaps.end());
ExtractBoneWeightForVertices(vertices,mesh,scene);
return Mesh(vertices, indices, textures);
}
void SetVertexBoneData(Vertex& vertex, int boneID, float weight)
{
for (int i = 0; i < MAX_BONE_WEIGHTS; ++i)
{
if (vertex.m_BoneIDs[i] < 0)
{
vertex.m_Weights[i] = weight;
vertex.m_BoneIDs[i] = boneID;
break;
}
}
}
void ExtractBoneWeightForVertices(std::vector<Vertex>& vertices, aiMesh* mesh, const aiScene* scene)
{
auto& boneInfoMap = m_OffsetMatMap;
int& boneCount = m_BoneCount;
for (int boneIndex = 0; boneIndex < mesh->mNumBones; ++boneIndex)
{
int boneID = -1;
std::string boneName = mesh->mBones[boneIndex]->mName.C_Str();
if (boneInfoMap.find(boneName) == boneInfoMap.end())
{
BoneInfo newBoneInfo;
newBoneInfo.id = boneCount;
newBoneInfo.offset = AssimpGLMHelpers::ConvertMatrixToGLMFormat(mesh->mBones[boneIndex]->mOffsetMatrix);
boneInfoMap[boneName] = newBoneInfo;
boneID = boneCount;
boneCount++;
}
else
{
boneID = boneInfoMap[boneName].id;
}
assert(boneID != -1);
auto weights = mesh->mBones[boneIndex]->mWeights;
int numWeights = mesh->mBones[boneIndex]->mNumWeights;
for (int weightIndex = 0; weightIndex < numWeights; ++weightIndex)
{
int vertexId = weights[weightIndex].mVertexId;
float weight = weights[weightIndex].mWeight;
assert(vertexId <= vertices.size());
SetVertexBoneData(vertices[vertexId], boneID, weight);
}
}
}
unsigned int TextureFromFile(const char* path, const string& directory, bool gamma = false)
{
string filename = string(path);
filename = directory + '/' + filename;
unsigned int textureID;
glGenTextures(1, &textureID);
int width, height, nrComponents;
unsigned char* data = stbi_load(filename.c_str(), &width, &height, &nrComponents, 0);
if (data)
{
GLenum format;
if (nrComponents == 1)
format = GL_RED;
else if (nrComponents == 3)
format = GL_RGB;
else if (nrComponents == 4)
format = GL_RGBA;
glBindTexture(GL_TEXTURE_2D, textureID);
glTexImage2D(GL_TEXTURE_2D, 0, format, width, height, 0, format, GL_UNSIGNED_BYTE, data);
glGenerateMipmap(GL_TEXTURE_2D);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
stbi_image_free(data);
}
else
{
std::cout << "Texture failed to load at path: " << path << std::endl;
stbi_image_free(data);
}
return textureID;
}
// checks all material textures of a given type and loads the textures if they're not loaded yet.
// the required info is returned as a Texture struct.
vector<Texture> loadMaterialTextures(aiMaterial *mat, aiTextureType type, string typeName)
{
vector<Texture> textures;
for(unsigned int i = 0; i < mat->GetTextureCount(type); i++)
{
aiString str;
mat->GetTexture(type, i, &str);
// check if texture was loaded before and if so, continue to next iteration: skip loading a new texture
bool skip = false;
for(unsigned int j = 0; j < textures_loaded.size(); j++)
{
if(std::strcmp(textures_loaded[j].path.data(), str.C_Str()) == 0)
{
textures.push_back(textures_loaded[j]);
skip = true; // a texture with the same filepath has already been loaded, continue to next one. (optimization)
break;
}
}
if(!skip)
{ // if texture hasn't been loaded already, load it
Texture texture;
texture.id = TextureFromFile(str.C_Str(), this->directory);
texture.type = typeName;
texture.path = str.C_Str();
textures.push_back(texture);
textures_loaded.push_back(texture); // store it as texture loaded for entire model, to ensure we won't unnecesery load duplicate textures.
}
}
return textures;
}
};
#endif

File diff suppressed because one or more lines are too long

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.0 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 193 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.8 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.9 MiB